
Design Fest 2004

Data Collection
TerraSense Arbor XT

Design team: Cristiano, Giuliano, Pedro,
Nélson, Lene, Henning, Fábio

Problem Description

ArborXT
• A system for gathering, storing and analyzing

weather information.

• Provides forest fire prediction, historical trend
analysis (possibly forecast), etc.

• Consists of hardware and software located at
central site and field locations.

Problem Description (cont.)

• Two main interacting parts
– Central Computer

• Maintains configuration data for all sensors.

• Gathers and stores sensor data.

• Performs various analysis and presents results to the user.

– Sensors
• Report measurements of physical data to the Central

Computer.

• Via various telecommunication hardware.

• At various intervals of time and tolerances.

• In a wide variety of units.

• May employ two distinct data flow models: pull and push.

Challenges

• Differences in telecommuncation links and their
reliability

• Various types of sensors with different
configurations

• Extracting the right information given the
potentially complex demands of the user

• Adding and configuring sensors

Assumptions

All sensor readings are stored in a database.

Sensor readings are stored in the database in a format that mirrors
the messages sent by the sensors: sensor id, value of sensor
reading and timestamp

A sensor stores a list of locations and timestamps marking the first
time they were put there

A group of sensors is the result of a query to the set of sensors.
It is a responsibility of the plugins to store this grouping
information if they want it stored

Assumptions (cont.)

Plugins embed functionality that allows them to build query
criteria and pass them to a query system inside the
central computer

If a plugin needs to analyze data from a given sensor
frequently, it has the responsibility of making periodic
queries to the query system to check for changes in the
data

Class model

+DataGatherer

+schedulePoll(aSensor: Sensor)
+storeReading(aReading: Reading)
+storeSensor(aSensor: Sensor)

«Device»
+Physical Sensor +TransportDriver

+requestData(aSensor: Sensor)
+storeReading(aReading: Reading)
+storeSensor(aSensor: Sensor)

+QuerySystem

+storeReading(aReading: Reading)
+storeSensor(aSensor: Sensor)
+performQuery(criteria: QueryCriteria)

+SensorDriver

+parseData(driver: TransportDriver, data: byte[])

«Structure»
+Sensor

+locationList
+installDateList
+id
+status
+interval
-type: SensorType

«Structure»
+SensorType

+measurementUnit
+pollingModel

+DBController

+AbstractPlugin

+setEnvironment(qs: QuerySystem)

+QueryCriteria

getAttribute(): Collection

+SensorData
s: Sensor
r: Reading list

«Structure»
+Reading

sensorId: int
timestamp: Date
value: int

«Communicates»

«Instantiates»

«Create»

«Create»

«Uses» «Creates»

«Uses»

«Uses»

«Uses»

«Uses»

Standard (relational?) database wrapper.
Could range from a simple façade to a complex
implementation such as JDBC.

Interactions: plugins querying for data

:Plugin :QuerySystem :DBController

Plugins querying for data

performQuery(cr:QueryCriteria)

retrieves data
from DBController

a collection of SensorData
is returned

Interactions: sensor configured
automatically

A new sensor is configured autom atically

td:Transport Driver:Physical Sensor :Sensor Driver :DataGatherer :QuerySystem DBController

sends data to
a transport
driver

parseData(td, data)

storeSensor(s:Sensor)
storeSensor(s:Sensor) storeSensor(s:Sensor)

schedulePoll(s:Sensor)

store sensor
information in
database

Interactions: sensor configured by
hand

A new sensor is configured by hand

:DataGatherer:QuerySystem DBController

storeSensor(s:Sensor)

schedulePoll(s:Sensor)

store sensor
information in
the database

:Plugin

Interactions: polling of sensors

Sensor reading (pull m odell). DataG atherer starts
sensor readings for given sensors periodically

:PhysicalSensor td:TransportDriver :DataGatherer :SensorDriver :QuerySystem :DBController

requestData(sensor)
the sensor is read

parseData(td, data)

storeReading(r:Reading)

storeReading(r:Reading) store information
in the database

Interactions: sensor sends its
readings

Sensor reading (push m odel).
Sensors send data to the system

:PhysicalSensor td:TransportDriver :DataGatherer :SensorDriver :QuerySystem :DBController

the sensor initiates
data transmission

parseData(td, data)

storeReading(r:Reading)

storeReading(r:Reading) store information
in the database

Lessons learned

• Process planning

• Read and discuss the case thoroughly

• Keep it simple

• Patterns and communication

• Patterns and design

• Naming of classes

