ANALISE COMPARATIVA DOS DIFUSORES DE SCHROEDER COM A ORGANIZAÇÃO SERIAL NA TÉCNICA DE COMPOSIÇÃO COM 12 NOTAS DE SCHOENBERG: PROPOSTA DE MÉTODOS PARA *DESIGN* DE DIFUSORES ACÚSTICOS

José A. Mannis* & Jonatas Manzolli**

*Departamento de Música, IA / Centro de Documentação de Música Contemporânea - Unicamp **Departamento de Música, IA / Núcleo Interdisciplinar de Comunicação Sonora - Unicamp e-mail : jamannis@uol.com.br, jonatas@nics.unicamp.br

Resumo: Apresentação da técnica de composição com doze notas de Schoenberg. A análise da estrutura dos difusores de Schroeder em comparação com a técnica de composição com 12 notas de Schoenberg mostram que quando o difusor possui estrutura complexa e, ao invés de repetições idênticas ou retrógrados, adota algoritmos que resultam numa série de N elementos (N é inteiro e número primo), induzidos de forma que seqüencialmente temos o Original seguido da sua Inversão, o desempenho do difusor é melhor. Com base nos aspectos positivos dos difusores de Schroeder bem como em trabalhos e experimentos no campo da difusão de ondas sonoras empregando outras técnicas que seqüências numéricas e que deram bons resultados, apresenta-se, ao final, novas propostas de design de estruturas de difusão.

1. COMPOSIÇÃO COM DOZE NOTAS¹

Schoenberg formulou seu pensamento sobre a composição com doze notas em 1950, muito depois de ter escrito diversas obras com esse método. Basicamente, consiste no uso constante e exclusivo de uma série de 12 notas diferentes, na qual nenhuma delas é repetida antes de completar o total cromático. Por questões óbvias essa série não deve ser de modo algum idêntica à escala cromática (Figura 1), na qual o intervalo entre as notas da série é constante e igual a [1] (segunda menor). Ao contrário, a série deve conter alturas que formam entre si variados intervalos.

В	С	C#	D	Eb	Е	F	F#	G	G#	А	Bb
0	1	2	3	4	5	6	7	8	9	10	11

								á	altu	ras d	la s	érie									
В	(5	С	#	Ε	0	E	b	E	Ξ	F	=	F	#	C	9	G	; #	A	7	Bb
0		1	2	2	3	3	4	1	Ę	5	6	6	7	7	8	3	ç	9	1	0	11
1		1		1		1		1		1		1		1		1		1			1
2ªm		2ªr	n_	2ªn	n_	2ªr	n_	2ªn	n_	2ªm	ı_	2ªr	n_	2ªn	n_	2ªr	n_	2ªr	n_	2'	'm_

intervalos entre as notas da série

Figura 1: 11 notas do total cromático (do a si = 0 a 11) Intervalos constantes e iguais a 1, segunda menor.

в	С	C#	D	Eb	Е	F	F#	G	G#	А	Bb
0	1	2	3	4	5	6	7	8	9	10	11

¹ SCHOENBERG, Arnold. **Stile e idea.** Tradução: Maria Giovanna Moretti e Luigi Pestalozza. Milano : Rusconi e Paolazzi, 1960. xlvii, 237p. (p.107-147, Composizione con dodici note) (ed. orig. New York : Philosophical Library, 1950)

altura	s da	a séi	rie																		
Α	E	ßb	E	ш	0)	E	b	Ľ)b	(F	F	F	#	G	i#	E	3	С
10	1	1	Ļ	5	23	3	4	1		2	ű	3	(6	7	7	ς,)	C)	1
1		-(6	-2	2	1		-2	2	6	6	-2	2	1		2	2	-(9		1
2ªm	I 🏌	5ªdi	m↑	2ª	` ↑	2ªr	n↑	2ª	۱ţ	5ªdi	im↑	2ª	'↑	2ªr	n↑	2ª	1	6	¹↑	2ª	³m↑
						ir	nterv	/alos	s er	ntre a	as n	otas	da	séri	е						

Figura 2: Série com vários intervalos.

Comparando a série da Figura 2 com a escala cromática (Figura 1), pode-se observar como a diversificação de intervalos enriquece a série e, conseqüentemente, seu potencial musical. Nesse exemplo observamos intervalos de 2ªm (segunda menor), 2ª (segunda maior), 5ªdim (quinta diminuída), e 6ª (sexta maior), ascendentes (↑) e descendentes (↓), que formam uma seqüência. Nessa següência, alguns termos aparecem tanto na forma ascendente guanto descendente (2ª Le 2ª 1 ; 5^adim↓ e 5^adim↑), e outros permanecem fixos (2^am↑ e 6^a↓).

A Figura 3 ilustra uma variação ainda mais acentuada dos intervalos em dois segmentos [3, -2, -5, -1, 7, 4] e [4, -9, 2, 5, 1, -7]. O intervalo de 3ªM (terça maior) [4] é comum a ambos. Os intervalos de 3ªm (terça menor) [3] e de 6ªM (sexta maior) [9] são equivalentes (inversão). Chamamos atenção para o fato particular de que o sentido ascendente-descendente dos intervalos se encontra também invertido de um segmento para outro.

в	С	C#	D	Eb	Е	F	F#	G	G#	А	Bb
0	1	2	3	4	5	6	7	8	9	10	11

							а	ltura	as d	a sé	erie								
Е	G	F	F	С	E	3	F	#	В	b	С	#	D	#	G	#	A	1	D
5	8	6	6	1	()	7	7	1	1	27	2	4	1	ç)	1	0	3
3	-:	2	-5	-	1	7	,	4	1	-!	9	2	2	5	;	1	I		-7
3ªm≬	24	"↓	4 ^a ↓	2ªr	n↓	5ª	1	3ªI	¢N	6ªI	۱۱	2ª	۱ţ	4 ^a	1	2ªr	n↑		5ª↓
					int	erva	llos	ent	re a	s no	tas	da s	érie						

Figura 3: Série com variação de intervalos.

O gráfico acima evidencia a simetria da distribuição das alturas percebidas pelo ouvinte. O eixo vertical é então logarítmico e representa a fregüência das notas musicais.

Até aqui consideramos o âmbito da série compreendido dentro de uma oitava [0 a 11]. Ampliando esse âmbito, temos, no exemplo a seguir, a série do segundo movimento da Sinfonia, op.21 de Anton Webern. Observe como o segundo segmento é a exata inversão do primeiro. Isso confere à série propriedades importantes para a estruturação e a unidade da composição.

G	G#	А	Bb	В	С	C#	D	Eb	Е	F	F#	G	G#	А	Bb	В	С	C#	D	Eb	Е	F	F#	G
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

									altu	ras	da s	érie									
F	Α	۲p	C	u)	F	#	В	b	4	4	ш	b	ш	Ξ	C	~	С	#)	В
10	1	3	()	1	1	<i></i>	3	1	4	2	0	U,	9	1	7	e	6	1	9	16
3		-1	3	1	1	-	8	1	1	6	6	-1	1	ε	3	-1	1	1	3		-3
3ªm	¢1	9ªr	n↓	7 ^a l	ſ≬	6ªI	۸î	7ª	M↑	5ªd	im↑	7ªI	N↓	6ªI	Λţ	7ª	N↓	9ªr	n↑	3'	³m↓

intervalos entre as notas da série

Figura 4: Série do segundo movimento da Sinfonia, op.21 - Anton Webern

O pivô A-Eb (intervalo de 5^ªdim) articula dois segmentos de série perfeitamente simétricos em relação ao eixo da freqüência (inversão). Os mesmos intervalos do primeiro segmento aparecem no segundo com sinal invertidos (sentido ascendente-descendente oposto).

1.1. Séries derivadas da série fundamental

Da série fundamental [O] derivam-se automaticamente três outras séries: sua inversão [I], seu retrógrado [R] e o retrógrado da inversão [RI], todas compreendidas no quadro abaixo.

В	С	C#	D	Eb	Е	F	F#	G	G#	А	Bb
0	1	2	3	4	5	6	7	8	9	10	11

-	0	1	2	3	4	5	6	7	8	9	10	11
0	5	8	6	1	0	7	11	2	4	9	10	3
1	2	5	3	10	9	4	8	11	1	6	7	0
2	4	7	5	0	11	6	10	1	3	8	9	2
3	9	0	10	5	4	11	3	6	8	1	2	7
4	10	1	11	6	5	0	4	7	9	2	3	8
5	3	6	4	11	10	5	9	0	2	7	8	1
6	11	2	0	7	6	1	5	8	10	3	4	9
7	8	11	9	4	3	10	2	5	7	0	1	6
8	6	9	7	2	1	8	0	3	5	10	11	4
9	1	4	2	9	8	3	7	10	0	5	6	11
10	0	3	1	8	7	2	6	9	11	4	5	10
11	7	10	8	3	2	9	1	4	6	11	0	5

Figura 5 – Quadro com a série original, todas suas transposições e séries derivadas.

No quadro geral de séries, as linhas da esquerda para a direita contém todas as transposições da séries na forma original [O_i]; da direita para a esquerda os retrógrados [R_i]; as colunas de cima para baixo contém as inversões [I_i]; e de baixo para cima os retrógrados das inversões [RI_i].

As séries foram todas adequadas a um único âmbito: B-Bb [0 a 11] A série original $[O_0]$ está na primeira linha: [5, 8, 6, 1, 0, 7, 11, 2, 4, 9, 10, 3]

Seu retrógrado [R₀]: [3, 10, 9, 4, 2, 11, 7, 0, 1, 6, 8, 5]

Sua inversão [l₀]: [5, 2, 4, 9, 10, 3, 11, 8, 6, 1, 0, 7]

O retrógrado da inversão [RI₀]: [7, 0, 1, 6, 8, 11, 3, 10, 9, 4, 2, 5]

A primeira transposição da série original $[O_1]$ está na segunda linha: [2, 5, 3, 10, 9, 4, 8, 11, 1, 6, 7, 0]

etc.

Segundo Schoenberg o emprego dessas formas espelhadas (nos domínios da freqüência e do tempo) corresponde ao princípio da percepção absoluta e unitária do espaço musical. Para Webern², através dessas formas cria-se o maior número possível de relações para a 'série', atinge-se um alto grau de coerência, o que resulta numa grande inteligibilidade. Em outras palavras, fazer o máximo com o mínimo, obtendo dessa forma o maior grau de variação e, ao mesmo tempo, o maior grau de unidade.

² WEBERN, Anton. Chemin vers la nouvelle musique. Paris : Jean-Claude Lattès, 1980. 170p.

S	Α	Т	0	R
Α	R	Е	Ρ	0
Т	Е	Ν	Е	Т
0	Ρ	Е	R	Α
R	0	т	Α	S

Figura 6: Ditado latino³: O semeador Arepo mantém a obra num movimento circular.

2. ANÁLISE COMPARATIVA ENTRE DIFUSORES DE SCHROEDER E A ORGANIZAÇÃO SERIAL NA TÉCNICA DE COMPOSIÇÃO COM DOZE NOTAS DE SCHOENBERG

As seqüências de profundidades d_n dos difusores de Schroeder QRD, PR₂D e PR₃D possuem estruturas com simétricas semelhantes às da organização das séries original [O] e suas derivadas: inversão [I], retrógrado [R] e retrógrado da inversão [RI] e igualmente contém séries, como visto no item 2 onde a composição com doze notas consiste basicamente no uso constante e exclusivo de uma série de notas diferentes, na qual nenhuma delas é repetida antes de completar o total.

Para comparar um tipo de difusor com outro, adotaremos os mesmos dados para o *design* de cada um. Neste caso,

$$d_n = \frac{S_n}{N} \frac{\lambda_0}{2}$$
$$\frac{\lambda_0}{2N} = cte \therefore d_n = kS_n$$

Portanto trabalharemos aqui somente com o parâmetro variante.

Para N=17 geraremos as seqüências S_n para cada um dos tipos de difusores:

	QRD	PR₂D	PR₃D
n	Sn	Sn	Sn
1	0	-	-
2	1	2	3
3	4	4	9
4	9	8	10
5	16	16	13
6	8	15	5
7	2	13	15
8	15	9	11
10	13	1	16
11	13	2	14
12	15	4	8
13	2	8	7
14	8	16	4
15	16	15	12
16	9	13	2
17	4	9	6
1	1	1	1

As seqüências S_n podem ser comparadas às séries de alturas musicais.

Observa-se no QRD um eixo de simetria entre $S_9 \in S_{10}$, sendo o segmento de S_{10} a S_{17} o retrógrado de S_1 a S_9 o que faz dessa seqüência uma <u>série de apenas 9 elementos</u> {0,1,4,9,16,8,2,15,13}. Em conseqüência dessa simetria, a seqüência de diferenças [S_{n+1} - S_n] entre S_{10} e S_{17} é retrógrada e invertida em relação a S_1 a S_8 , com pivot [0] em S_9 .

³ WEBERN, idem. p.145, conclusão de conferência proferida em 02/Mar/1932

Figura 7: Seqüências $S_n \in S_{n+1}$ - S_n num QRD N=17. O primeiro gráfico mostra um claro retrógrado.

Em PR₂D a seqüência S_1 a S_8 se repete a partir de S_9 , o que faz dela na verdade uma <u>série de</u> <u>apenas 8 elementos</u> {2,4,8,16,15,13,9,1}. Porém essa seqüência tem um eixo de simetria entre S_4 e S_5 sendo os termos S_5 a S_8 a exata inversão do segmento de S_1 a S_4 , ou seja, $S_5 = N - S_1 = 17 - S_1$; $S_6 = 17 - S_2$; etc. A seqüência $S_{n+1} - S_n$ consiste em uma série de 4 elementos em S_1 a S_4 e S_9 a S_{12} invertidos a partir de S_5 e S_{13} .

I Seminário Música Ciência Tecnologia: Acústica Musical

Figura 8: Sequências $S_n \in S_{n+1}$ - S_n num PR₂D *N*=17.

Em PR₃D a seqüência S_1 a S_{16} é de fato uma série de 16 elementos {3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1} na qual o segmento de S_9 a S_{16} é a exata inversão do segmento S_1 e S_8 . Observe que a sequência S_{n+1} - S_n constitui uma série de 8 elementos que reaparece invertida a partir de S_9 . A organização dessas profundidades tem a mesma estrutura que a das séries do segundo movimento da Sinfonia, op.21 de Anton Webern (v. Figura 4).

Figura 9: Sequências $S_n \in S_{n+1}$ - S_n num PR₃D *N*=17.

A distribuição das profundidades no PR₃D possui uma complexidade maior do que nos QRD e PR₂D, onde a estrutura destes acaba sendo mais redundante. No PR₃D temos uma série com 16 elementos, contra 9 no QRD e 8 no PR₂D. A seqüência de diferenças procura mostrar a variedade de articulações entre as cavidades. No PR₃D e no QRD a seqüência de diferenças contém uma série de 8 elementos, e no PR₂D 4 elementos, ou seja, no PR₃D e no QRD as cavidades se articulam de 8 maneiras diferentes, enquanto no PR₂D de 4 maneiras diferentes. Ou seja, a variedade de relações internas entre as cavidades num PR₃D é maior do que num QRD, que por sua vez é maior do que num PR₂D. Vendo exclusivamente sob esta ótica, essa riqueza de relações internas poderia estar associada a um desempenho melhor, uma vez que o difusor estaria impondo à onda incidente situações mais variadas de diferença de fase. Acrescente-se a isso que os efeitos parciais de profundidades de cavidades múltiplas inteiras de 1/2 comprimento de onda, bem como o de absorção por ressonância por 1/4 de comprimento de onda, sejam mais marcantes nos PR₂D e QRD e mais atenuados e distribuídos no PR₃D.

3. PROPOSTA DE IMPLEMENTAÇÃO DE MÉTODOS DE *DESIGN* DE DIFUSORES A PARTIR DAS PROPRIEDADES ANALISADAS

3.1. Implementações para o *design* de difusores de Schroeder

Como visto acima, uma seqüência S_n em módulo N pode ser considerada uma a série de números inteiros de a_1 a a_{N-1} onde não há repetição de nenhum termo antes de esgotar a série inteira. Por exemplo, tomando a base 10, uma série de 9 termos seria uma seqüência de 9 inteiros composta de 1 a 9, como {2,7,8,4,1,9,3,5,6} ou {9,3,8,4,5,6,2,7,1} ou {1,2,3,4,5,6,7,8,9}. A diferença entre elas seria o número de relações internas que cada uma possui. A terceira é extremamente redundante, pois a diferença entre os termos é sempre a mesma e igual a 1. A segunda tem estrutura simétrica de inversão com pivô em 5 (9+1 = 3+7 = 8+2 = 4+6 = 5+5 = 10). A primeira tem maior variedade de diferenças de profundidade entre as cavidades adjacentes $S_{n+1} - S_n$ {5,1,4,3,8,6,2,1}. Justamente a técnica de composição com 12 notas baseia-se numa série gerativa de toda uma obra. Esta série necessita então ser estruturada de tal forma que por um lado possua ou gere um máximo de relações possíveis e por outro que tenha propriedades que serão exploradas no decorrer da obra. Nesse sentido dificilmente uma série como {1,2,3,4,5,6,7,8,9} seria adotada, o que equivaleria à uma escala cromática, como na Figura 1. Há, portanto, tanto em arte como nas ciências uma certa exigência de elegância em análise, demonstração, síntese e implementações decorrentes.

Pode-se dizer que a estrutura de um PR_3D para N=17 seja uma série de inteiros não repetidos de 1 a 16 com a propriedade de possuir um eixo de simetria entre o 8° e o 9° termos, sendo seu segundo segmento a inversão do primeiro. Dessa forma, para os mesmos parâmetros de *design* de um difusor PR_3D várias séries S_n poderiam ser encadeadas eliminando assim o efeito de periodicidade.

Aproveitando as propriedades da série do PR₃D, para gerar uma série bastaria determinar os primeiros 8 elementos, sendo os demais obtidos pela inversão desses, ou seja, $a_{i+8} = 17 - a_i$. Por exemplo, dos primeiros oito termos {3,9,10,13,5,15,11,16} pode-se deduzir os restantes {14,8,7,4,12,2,6,1} obtendo a série total I {3,9,10,13,5,15,11,16, 14,8,7,4,12,2,6,1}. Esta é a mesma série que ilustra a Figura 9.

Para outros oito termos iniciais {13,7,9,3,16,11,15,5} temos outra série completa II {13,7,9,3,16,11,15,5,4,10,8,14,1,6,2,12} com as mesmas propriedades.

Figura 10: Série II

Permutando os termos ímpares na primeira série entre os primeiros oito termos e sua inversão, temos $\{1,11,2,5,4,10,8,14,16,6,15,12,13,7,9,3\}$ e com pequenas alterações III $\{1,11,2,10,4,5,9,14,16,6,15,7,13,12,8,3\}$ temos uma outra série com S_{n+1} – S_n todos diferentes.

Figura 11: Série III

Obtemos assim três séries S_n que poderiam ser encadeadas atenuando o efeito de repetição I-III

Figura 12: Séries I-III

Essa macro-série, por sua vez, poderia ser invertida⁴

(I-III)inv

 $\{14,8,7,4,12,2,6,1,3,9,10,13,3,15,11,16;4,10,8,14,1,6,2,12,13,7,9,3,16,11,15,5;16,6,15,7,13,12,8,3,1,11,2,10,4,5,9,14\}$

e encadeada com a original:

I-III; (I-III)inv

 $\{3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1;13,7,9,3,16,11,15,5,4,10,8,14,1,6,2,12;1,11,2,5,4,10,9,14,16,6,15,12,13,7,8,3,14,8,7,4,12,2,6,1,3,9,10,13,3,15,11,16;4,10,8,14,1,6,2,12,13,7,9,3,16,11,15,5;16,6,15,7,13,12,8,3,1,11,2,10,4,5,9,14\}.$

Figura 13: Série I-III; (I-III)inv

⁴ ANGUS, James A. S. Large area diffusers using modulated phase reflection gratings. In: CONVENTION AUDIO ENGINEERING SOCIETY, 98, 1995, Paris. **Preprint** 3954. [p.6]

à segunda metade poderia ser adicionado⁵ 10 (mod 17) eliminando os fragmentos retrogradados "ao pé da letra" gerados pelas duplas inversões. Na técnica de composição com doze sons, essa adição equivaleria a uma transposição da série original.

Figura 14 - Série I-III; 10+(I-III)inv (mod 17)

e, em seguida, o todo encadeado com seu retrógrado também adicionado de 10 (mod 17).

I-III; 10+(I-III)inv (mod 17); 10+(I-III; 10+(I-III)inv (mod 17))ret (mod 17)

São inúmeras as possibilidades e sempre as propriedades e a coerência das séries originais $S_{n+1}-S_n = k$ ou $S_{n+1}-S_n = 17-k$ (diferença invertida) foram respeitadas e mantidas.

Com base numa macro-série como acima mais uma outra seqüência de profundidades de um difusor com características diferentes (f_0 , N, *tipo* $QR / PR_2 / PR_3$), uma modulação entre os dois difusores poderia ser realizada conforme esquemas propostos por ANGUS^{6 7 8}.

Se também adotarmos um f_{max} diferente para o novo difusor, teremos igualmente uma variação da largura da cavidade W, ou então W poderia ser modulado, dada uma diferença de âmbito $f_{max2} - f_{max1}$ e aplicando-se a W uma seqüência S_n tal que :

$$W_{n} = \frac{c}{2\left(f_{\max 1} + \frac{S_{n}}{N}(f_{\max 2} - f_{\max 1})\right)}$$

ou seja, para cada cavidade teremos um S_n que definirá uma porcentagem da diferença de âmbito $f_{max2} - f_{max1}$ afetando proporcionalmente o estreitamento da largura W. Este recurso seria mais facilmente aplicado a difusores unidimensionais, visto que nos bidimensionais uma mesma cavidade necessita ter a mesma largura na seqüência de sua linha como na seqüência de sua coluna.

3.2. Qualidades exigidas de um difusor

Um difusor acústico ideal deve ter as seguintes propriedades⁹:

- Produzir através da reflexão o espalhamento da onda incidente com distribuição direcional de intensidade uniforme;
- A energia acústica incidente deve ser refletida sem nenhuma perda de energia;
 Os difusores de Schroeder cumprem bem a primeira propriedade, porém, absorvem energia:
- por causa do grande aumento de velocidade das partículas no interior e justo acima do difusor¹⁰;

⁵ COX, Trevor, D'ANTONIO, Peter. Schroeder diffusers: a review. **Building Acoustics**, vol.10, nº1, 2003. p.1-32 [p.9] 6 ANGUS, J. A. S. Using modulated phase reflection gratings to achieve specific diffusion characteristics. In: CONVENTION AUDIO ENGINEERING SOCIETY, 99, 1995, New York. **Preprint** 4117.

⁷ ANGUS, J. A. S. Wideband two dimensional diffusers using orthogonal modulated sequences. In: CONVENTION AUDIO ENGINEERING SOCIETY, 103, 1997, New York. **Preprint** 4640.

⁸ ANGUS, J. A. S. Using grating modulation to achieve wideband large area diffusers. **Applied Acoustics**, vol.60, n°2, June 2000. p.143-165.

⁹ TAKAHASHI, D. A design method for optimum acoustic diffusers. In: ANDO, Yoichi, NOSON, Dennis (Ed.) Music and concert hall acoustics. p.183-190 [p.184]

- devido ao fluxo de partículas com velocidade incrementada entre uma cavidade e outra para igualar a pressão na entrada do difusor¹¹;
- devido ao alto fluxo de energia na entrada das cavidades, entre aquelas que estão em ressonância e as que não estão em ressonância; e à absorção por ressonância de 1/2 de onda, sobretudo se as cavidades são estritas ¹²¹³¹⁴;

Numa pequena sala, onde as reflexões ocorrem muito rapidamente devido às pequenas dimensões do local, uma absorção de 5dB¹⁵ a 10dB¹⁶ produz um caimento demasiadamente acentuado ao som, interferindo assim num parâmetro fundamental para a performance musical, o preenchimento do som^{17 18 19}.

Portanto, devemos investigar outros tipos de difusores nos quais não ocorra absorção de energia e que possam produzir um espalhamento de energia satisfatório.

3.3. Exemplo de difusor com melhor desempenho que os de Schroeder

Comparando um difusor unidimensional QRD, N=13, N.W=1m, $d_{max}=30cm^{20}$, ou seja, $f_0 \sim 527Hz$ e $f_{max} \sim 2228Hz$, W=7,7cm com um difusor composto por arcos cilíndricos com período de 1m e profundidade máxima de 20cm (Figura 15), FUJIWARA21 obteve resultados indicando que o difusor com arcos cilíndricos distribui a energia de maneira mais uniforme que o QRD em todas as freqüências e, particularmente em 1KHz e 4KHz, a distribuição do difusor com arcos é muito melhor que no QRD.

Figura 15 – Difusor de arcos cilíndricos.

MASUDA e FUJIWARA²² comparando duas superfícies periódicas, ambas com período de 1m e altura máxima de 20cm, uma porém com perfil cilíndrico e outra triangular, obtém melhores resultados com o perfil cilíndrico do que com o triangular, considerando ambas tanto finitas quanto infinitas, notadamente nos lóbulos de difusão no mesmo quadrante da onda incidente, onde o difusor triangular apresenta atenuação na distribuição de energia.

Conforme os resultados obtidos nos estudos acima, conclui-se que os difusores com perfil cilíndrico permitem de fato uma melhor qualidade de difusão.

¹⁵ FUJIWARA, K., MORIYASU, N., A study on the absorption coefficient of a practically constructed Schroeder diffuser at normal incidence. **Proceedings Inter-noise 93.** Vol.III, p.1703 (1993).

¹⁰ FUJIWARA, Kyoji. Sound reflection and absorption of a QR-type Schroeder diffuser. In: ANDO, Yoichi, NOSON, Dennis (Ed.) Music and concert hall acoustics. London: Academic Press, 1997. Cap.21 p.211-217.

¹¹ EVEREST, F. Alton. Sound studio construction on a budget. New York (EUA): McGraw-Hill, 1997. 298p. [p.154-156].

¹² FUJIWARA, K., MIYAJIMA, T. A study of the sound absorption of a quadratic-residue type diffuser. Acustica, vol.81, 1995. p.370-378.

¹⁵ WU, T., COX, T. J., and LAM, Y. W. A profiled structure with improved low frequency absorption. **J. Acoust. Soc. Am.**, vol.110, n°_, 2001. p.3064-3070.

¹⁴ WU, T., COX, T. J., and LAM, Y. W. From a profiled diffuser to an optimased absorber. **J. Acoust. Soc. Am.**, vol.108, n°2, 2000. p.643-650.

¹⁶ EVEREST, F. Alton. Sound studio construction on a budget. New York (EUA): McGraw-Hill, 1997. 298p. [p.154-156].

¹⁷ BERANEK, Leo L. Music, acoustics & architecture. New York: John Wiley & Sons, 1962. 585p.

¹⁸ MALAFAIA, Soraia F., TENENBAUM, Roberto A. Estudo psicoacústico dos parâmetros utilizados para caracterizar a qualidade acústica de salas de concerto. In: ENCONTRO DA SOCIEDADE BRASILEIRA DE ACÚSTICA, 19, 2000, Belo Horizonte. **Anais...** p.318-323.

¹⁹ MANNIS, José A. Intérprete do som: Bases interdisciplinares da performance eletroacústica : Tomada e projeção do som. In: SEMINÁRIO BRASILEIRO DE ENGENHARIA DE ÁUDIO, 1, 2002, Belo Horizonte. **Anais...** p.10 ISBN:85-89029-01-8 (acompanha CD-ROM com texto completo)

²⁰ Para esses dados seria necessário N=17 (N=2. m_{max} . f_{max}/f_0 , sendo $m_{max}=2$)

²¹ FUJIWARA, Kyoji. Sound reflection and absorption of a QR-type Schroeder diffuser. In: ANDO, Yoichi, NOSON, Dennis (Ed.) **Music and concert hall acoustics.** London: Academic Press, 1997. Cap.21 p.211-217 [p.212-213]

²² MASUDA, K. Sound reflection from periodical uneven surfaces. In: ANDO, Yoichi, NOSON, Dennis (Ed.) Music and concert hall acoustics. p.191-201

3.4. Proposta de *design* de difusor a partir da organização serial e perfis arredondados

Considerando as qualidades exigidas de um difusor, conforme visto no item 0, a melhor performance de difusores com perfis arredondados (item 0) e as propriedades estruturais positivas das seqüências de números inteiros juntamente à organização serial pode-se imaginar uma superfície difusora irregular e arredondada com o objetivo de produzir difusão num largo âmbito de freqüências, inclusive evitando os modos normais de uma pequena sala.

Para isso, vamos generalizar a aplicação da organização serial, estendendo-a além de profundidades, para diversos parâmetros de irregularidades controladas de objetos como: dimensões, rotação horizontal (rotação sobre o eixo vertical; esquerda-direita), rotação vertical (rotação sobre o eixo horizontal; para cima - para baixo).

```
Rotação horizontal
          e = painel virado para a ESQUERDA
          d = painel virado para a DIREITA
          Série: {e, d}
          Seqüência: {e,d,e,d,e,d,e,d...}
          Rotação vertical
          F = painel inclinado para FRENTE
          T = painel inclinado para TRÁS
          Série: {F,T}
          Largura dos painéis
          G = painel GRANDE G1 (83 cm) G2 (71 cm)
          M = painel MÉDIO M1 (61 cm)
                                                         M2 (51 cm)
          P = painel PEQUENO P1 (43 cm) P2 (37 cm)
          Série: {G,M,P}
          Sequência: {G, M, P, G, G, G, M, P, P, M, G, P, M, M, P, G, G, G, M, P, M, P, P, M, G, G, P, M, G, G,
          M...}
          Série: {2,1}
           Seqüência: {2,1,1,2,1,1,2,2,2,2,1,1,2,1,1,2,1,1,1,2,2,1,2,1,2,2,1,2,1,2,1,2,1,2,1,...}
           Série composta : {G<sub>2</sub>, M<sub>1</sub>, P<sub>1</sub>, G<sub>1</sub>, M<sub>2</sub>, P<sub>2</sub>}
           Seqüência composta: {G<sub>2</sub>, M<sub>1</sub>, P<sub>1</sub>, G<sub>2</sub>, G<sub>1</sub>, M<sub>2</sub>, P<sub>2</sub>, P<sub>2</sub>, M<sub>2</sub>, G<sub>1</sub>, P<sub>1</sub>...}
        Reunindo todas as seqüências temos então a série geral composta:
F_{e}^{G_{2}} F_{d}^{M_{1}} T_{e}^{P_{1}} F_{d}^{G_{2}} T_{e}^{G_{1}} T_{d}^{G_{1}} F_{e}^{M_{2}} T_{d}^{P_{2}} F_{e}^{P_{2}} T_{d}^{M_{2}} F_{e}^{G_{1}} F_{d}^{P_{1}} T_{e}^{M_{2}} F_{d}^{M_{1}}
T_{e}^{P_{1}} T_{d}^{G_{2}} T_{e}^{G_{1}} F_{d}^{G_{1}} T_{e}^{M_{1}} F_{d}^{P_{2}} F_{e}^{M_{2}} T_{d}^{P_{1}} F_{e}^{P_{2}} T_{d}^{M_{1}} F_{e}^{G_{2}} T_{563} 61_{d}^{G_{2}} T_{e}^{P_{1}} F_{d}^{M_{2}}
```

3.5. Implementação da série geral

 $T_e^{G_1} F_d^{G_2} F_e^{M_1}$

Na figura a seguir, vista superior da série de inclinações de placas.

- Na primeira seqüência a série simples acima com inclinações laterais de 10°.
- Na segunda seqüência a série simples acima com inclinações laterais de 20°.
- Na última seqüência da figura abaixo, foram inclinados blocos inteiros de placas (já inclinadas), um em relação a outro, obtendo-se assim efeito de difusão para comprimentos de onda maiores.

10º	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
200 modulado - (100 om grupos	
	~~
	\sim

Figura 16: Vista superior das inclinações esq-dir das placas da parede de gesso duplo acartonado.

3.6. Inclinações frente-trás

Figura 17: Na fileira de trás, placas somente com inclinação lateral. Na fileira adiante, as mesmas placas porém acrescentando inclinação frente-trás.

Ao produzir a inclinação frente-trás, abre-se um vão triangular entre as placas sucessivas. Posteriormente esse vão deve ser devidamente fechado com placas triangulares, sendo o vértice sempre apontado para baixo.

Figura 18 - Placa triangular para fechamento dos vãos.

Na figura a seguir pode-se observar algumas seqüências de placas triangulares sucessivamente. Essa alteração ocorreu para evitar alguns paralelismos entre placas triangulares fechando vãos resultantes das inclinações frente-trás.

Seqüências de 3 placas triangulares substituindo duas placas triangulares paralelas e uma placa retangular ao meio das duas. Quebra do paralelismo entre placas triangulares evitando freqüências de ressonância.

Figura 19 - Parede de gesso. À esquerda placas com espaços já preenchidos por placas triangulares. À direita ainda permanecem os vãos produzidos pela inclinação frente-trás.

Placas paralelas podem gerar modos normais derivados da distância *L* entre as placas e por isso devem ser evitadas.

Figura 20: Placas de fechamento paralelas em roxo produzindo modos normais.

3.7 Procedimento para evitar paralelismo entre placas triangulares fechando vãos paralelos produzidos por inclinações frente-trás das placas principais

Ao invés da placa retangular P e suas respectivas placas de fechamento dos vãos $F_e \in F_d$ (em roxo), coloca-se um conjunto de três placas triangulares T_1 , $T_2 \in T_3$ (em vermelho) eliminando o paralelismo sem quebrar a continuidade da alternância de inclinações.

Figura 21: Conjunto de 3 placas triangulares (em vermelho) substituindo a placa retangular amarela e suas duas placas laterais de fechamento (roxas).

Figura 22: Parede de gesso: algumas dimensões. Ao final, cada placa terá um perfil cilíndrico com profundidade h = 0,2L.

4. CONCLUSÕES

Superfícies como as duas últimas propostas não absorvem energia e portanto contribuem para a manutenção do preenchimento do som na performance musical. Suas inclinações gerais evitam o paralelismo com a partição oposta e, portanto, eliminam os modos normais de uma pequena sala. Seria necessário saber como elas reagiriam na difusão de médias e altas freqüências para poder validar a proposta de paredes seriais em alternativa aos difusores de Schroeder e às superfícies periódicas.

5. REFERÊNCIAS

- ANDO, Y., KAGEYAMA, K. Subjective preference of sound with a single early reflection. **Acustica**, vol.37, nº2, März 1977. p.111-117.
- ANDO, Y., KATO, K. Calculations on the sound reflection from periodically uneven surfaces of arbitrary profile. Acustica, vol.35, n°5, August 1976. p.321-329.
- ANDO, Yoichi, NOSON, Dennis (Ed.) Music and concert hall acoustics. London: Academic Press, 1997. 433p.
- ANDO, Yoichi. Architectural acoustics: blending sound sources, sound fields, and listeners. New York: Springer-Verlag, 1998. 252p.
- ANGUS, J. A. S. Using grating modulation to achieve wideband large area diffusers. **Applied Acoustics**, vol.60, nº2, June 2000. p.143-165.

ANGUS, James A. S. Large area diffusers using modulated phase reflection gratings. In: CONVENTION AUDIO ENGINEERING SOCIETY, 98, 1995, Paris. **Preprint** 3954.

ANGUS, J. A. S. Using modulated phase reflection gratings to achieve specific diffusion characteristics. In: CONVENTION AUDIO ENGINEERING SOCIETY, 99, 1995, New York. **Preprint** 4117.

ANGUS, J. A. S. Wideband two dimensional diffusers using orthogonal modulated sequences. In: CONVENTION AUDIO ENGINEERING SOCIETY, 103, 1997, New York. **Preprint** 4640.

ARRUDA, Fábio R., GUEDES, Renata, MÜLLER, Swen, BRANDÃO, Paulo C. R., NABUCO, Marco, ZINDELUK, Moysés, ROCHA, Renato O. A Influência da direcionalidade de fontes sonoras na avaliação experimental da qualidade acústica de salas. In: ENCONTRO DA SOCIEDADE BRASILEIRA DE ACÚSTICA, 19, 2000, Belo Horizonte. Anais... p.312-317.

BARRON, M. Growth and decay of sound intensity in rooms according to some formulae of geometric acoustics theory. **Journal of Sound and Vibration**, vol.27, n°2, 1973. p.183-196.

BARRON, M., LEE, L-J. Energy relations in concert auditoriums. I J. Acoust. Soc. Am., vol.84, nº2, August 1988. p.618-628.

BERANEK, Leo L. Acoustic measurements. New York: John Wiley & Sons, Inc., 1949. 914p.

BERANEK, Leo L. Acoustics. New York: Acoustical Society of America, 1993. 491p.

BERANEK, Leo L. Concert and opera halls: how they sound. New York: Acoustical Society of America, 1996. 643p.

BERANEK, Leo L. Music, acoustics & architecture. New York: John Wiley & Sons, Inc., 1962. 585p.

CONDAMINES, Roland. Stéréophonie : cours de relief sonore théorique et appliqué. Paris : Masson, 1978. 301p.

COOPER, Jeff. Building a recording studio. 5a. ed. Los Angeles (EUA): Synergy group inc., 1996. 209p.

COX, T. J., AVIS, M. R., XIAO, L. The potential for room acoustic active diffusers. **Revista de Acústica**, vol.23, 2002. RBA-06-003-IP ISBN 84-87985-07-6 (http://www.ia.csic.es/sea/forum/forum.htm)

COX, Trevor, D'ANTONIO, Peter. Schroeder diffusers: a review. Building Acoustics, vol.10, nº1, 2003. p.1-32

- D'ANTONIO, Peter & KONNERT, John H. The acoustical properties of sound diffusing surfaces: the time, frequency and directivity energy response. In: AES CONVENTION, 79., 1985 New York. **Proceedings...** 18p. [2295 (B-6)]
- D'ANTONIO, Peter & KONNERT, John H. The reflection phase grating diffusor: design theory and application. J. Audio Eng. Soc., vol.32, nº4, April 1984. p.228-238.

D'ANTONIO, Peter & KONNERT, John H. The RPG reflection phase grating acoustical diffusor: applications. In: AES CONVENTION, 76., New York, 1984. **Proceedings...** 8p. [2156 (H-7)]

D'ANTONIO, Peter & KONNERT, John H. The Schroeder quadratic-residue diffusor: design theory and application. In: AES CONVENTION, 74.,1983, New York. **Proceedings...** 26p. [1999 (C-4)]

D'ANTONIO, Peter, COX, Trevor J. Diffusor application in rooms. Applied Acoustics, vol.60, nº2, June 2000. p.113-142.

DAVIS, Don & DAVIS, Carolyn. **Sound system engineering**. 2.ed. Indianapolis (EUA): Howard W. Sams & Co., 1987. 665p. DE MARCO, Conrado Silva. **Elementos de acústica arquitetônica**. São Paulo: Nobel, 1982. 129p.

EVEREST, F. Alton & SHEA, Mike. How build a small budget recording studio. 2a. ed. New York (EUA): TAB Books (division of McGraw-Hill), 1988. 295p.

EVEREST, F. Alton. Acoustics of small rooms. In: BALLOU, Glen (Ed.) **Handbook for sound engineers** : the new audio cyclopedia. Indianapolis (EUA): Howard W. Sams & Co., 1988. Cap.3 p.41-60

EVEREST, F. Alton. Acoustical design of audio rooms. In: BALLOU, Glen (Ed.) Handbook for sound engineers : the new audio cyclopedia. Indianapolis (EUA): Howard W. Sams & Co., 1988. Cap.5 p.93-118

EVEREST, F. Alton. Fundamentals of sound. In: BALLOU, Glen (Ed.) Handbook for sound engineers : the new audio cyclopedia. Indianapolis (EUA): Howard W. Sams & Co., 1988. Cap.1 p.3-22

EVEREST, F. Alton. Recordings studios design. In: BALLOU, Glen (Ed.) **Handbook for sound engineers** : the new audio cyclopedia. Indianapolis (EUA): Howard W. Sams & Co., 1988. Cap.6 p.119-154

EVEREST, F. Alton. Sound studio construction on a budget. New York (EUA): McGraw-Hill, 1997. 298p.

FARINA, Angelo. A new method for measuring the scattering coefficient and the diffusion coefficient of panels. Acustica, vol.86, n°6, Novembro/Dezembro 2000. p.928-942.

FISCHETTI, A., JOUHANEAU, J. The Influence of first reflection distribution on the quality of concert halls. **Applied Acoustics**, vol.35, n°3, 1992. p.233-245.

FUJIWARA, K. Sound absorber for low frequency with the aid of random phase interference. **Proc. Autumn Meet. Acoust. Soc. Jpn**, pp. 707-708 (1989) (in Japanese)

FUJIWARA, K., MIYAJIMA, T. A study of the sound absorption of a quadratic-residue type diffuser. **Acustica**, vol.81, 1995. p.370-378.

FUJIWARA, K., MIYAJIMA, T. Absorption characteristics of a practically constructed Shroeder diffuser of quadratic-residue type. **Applied Acoustics**, vol.35, 1992. p.149-152.

- FUJIWARA, K., MORIYASU, N., A study on the absorption coefficient of a practically constructed Schroeder diffuser at normal incidence. Proceedings Inter-noise 93. Vol.III, p.1703 (1993)
- FUJIWARA, K., MORIYASU, N., The absorption coefficient of QRD in the low frequency range. **Proc. Autumn Meet. Acoust. Soc. Jpn**, pp. 821-822. (1993)(in Japanese)

FUJIWARA, K., NAKAI, K., TORIHARA, H. Visualization of the sound field around a Schroeder diffuser. **Applied Acoustics**, vol.60, n°2, June 2000. p.225-235.

FUJIWARA, K., NAKAI, K., TORIHARA, H. Visualisation of the sound field around a Schroeuder diffuser. Applied Acoustics, vol.60, n°2, 2000. p.225-236.

FUJIWARA, Kyoji. Sound reflection and absorption of a QR-type Schroeder diffuser. In: ANDO, Yoichi, NOSON, Dennis (Ed.) Music and concert hall acoustics. London: Academic Press, 1997. Cap.21 p.211-217

GEN-HUA, Dai, ANDO, Y. Generalized analysis of sound scattering by diffusing walls. Acustica, vol.53, nº6, Oktober 1983. p.296-301.

GERGES, Samir N. Y. Ruído : fundamentos e controle. Florianópolis: S. N. Y. Gerges, 1992. 600p.

JONG, B. A. de, BERG, P. M. van den. Teoretical design of optimum planar sound diffusers. J. Acoust. Soc. Am., vol.68, nº4, October 1980. p.1154-1159.

KINSLER, Lawrence E. & FREY, Austin R. Fundamentals of acoustics. 3.ed. New York : John Wiley & Sons, 1982. 480p.

- KNUDSEN, Vern O.& HARRIS, Cyril M. Acoustical design in architecture. 2.ed. New Yok : Acoustical Society of America, 1978. 408p.
- KUTTRUFF, H. Sound absorption by pseudostochastic diffusers (Schroeder diffusers) **Applied Acoustics**, vol.42, 1994. p.215-231.

KUTTRUFF, Heinrich. Room acoustics. 4.ed. London: Elsevier Science Publisher, 2000.

- HARGREAVES, T. J., COX, T. J., LAM, Y.W., D'ANTONIO, P. Surface diffusion coefficients for room acoustics : free field measures. J. Acoust. Soc. Am., vol.108, nº4, 2000. p.1710-1720.
- LEWERS, T. H., ANDERSON, J. S. Some acoustical properties of St. Paul's Cathedral, London. Journal of Sound and Vibration, vol.92, nº2, 1984, p.285-297.
- MANNIS, José A. Intérprete do som: Bases interdisciplinares da performance eletroacústica: Tomada e projeção do som. In: SEMINÁRIO BRASILEIRO DE ENGENHARIA DE ÁUDIO, 1, 2002, Belo Horizonte. **Anais...** p.10 ISBN:85-89029-01-8 (acompanha CD-ROM com texto completo)
- MASUDA, K. Sound reflection from periodical uneven surfaces. In: ANDO, Yoichi, NOSON, Dennis (Ed.) Music and concert hall acoustics. p.191-201
- MECHEL, F. P. The wide-angle diffuser a wide angle absorber? Acustica, vol.81, nº__, 1995, p.379-401.
- MILES, R. N. Sound field in a rectangular enclosure with diffusely reflecting boundaries. Journal of Sound and Vibration, vol.92, n°2, 1984, p.203-226.
- MOMMERTZ, Eckart. Determination of scattering coefficients from the reflection directivity of architectural surfaces. **Applied Acoustics**, vol.60, n°2, June 2000. p.201-203.
- ONITSUKA, H., and KAWAKAMI, F. Numerical study on the energy dissipation of diffusers. **Proc. Autumn Meet. Acoust. Soc. Jpn**, pp. 813-814 (1993) (in Japanese)
- ONITSUKA, H., and KAWAKAMI, F. Numerical study on the energy dissipation of diffusers. **Tec. Rep. Archit. Acoust. Soc. Jpn**, AA94-20 (1994) (in Japanese)
- ONITSUKA, Hirofumi, KAWAKAMI, Fukushi. Numerical study of energy dissipation in QR-diffusers. In: ANDO, Yoichi, NOSON, Dennis (Ed.) **Music and concert hall acoustics.** London: Academic Press, 1997. Cap.20 p.203-209
- SCHOENBERG, Arnold. **Stile e idea.** Tradução: Maria Giovanna Moretti e Luigi Pestalozza. Milano : Rusconi e Paolazzi, 1960. xlvii, 237p.
- SCHOENBERG, Arnold. Style and idea. New York : Philosophical Library, 1950. vii, 224p.
- SCHROEDER, M. R. Binaural dissimilarity and optimum ceilings for concert halls : more lateral sound diffusion. J. Acoust. Soc. Am., vol.65, nº4, April 1979. p.958-963.
- SCHROEDER, Manfred R. New method of Measuring Reverberation Time. J. Audio Eng. Soc., vol.37, nº3, March 1965. p.409-412.
- SCHROEDER, Manfred R. Number theory in science and communication: with applications in cryptography, physics, digital information, computing, and self-similarity. 3.ed. New York: Springer-Verlag, 1997. (Spring series in Information Sciences, vol.7) 363p. (1.ed. em alemão, Berlin : Springer, 1984)
- SCHROEDER, Manfred R. Progress in architectural acoustics and artificial reverberation: concert hall acoustics and number theory. J. Audio Eng. Soc., vol.32, nº4, April 1984. p.194-198.
- SEARS, Francis, ZEMANSKY, Mark W. & YOUNG, Hugh D. Física: mecânica dos fluidos, calor, movimento ondulatório. 2.ed. Rio de Janeiro: LTC - Livros Técnicos e Científicos Editora S.A., 1984. v.2.
- SEPMEYER, L. W. Computed Frequency and Angular Distribution of the Normal Modes of Vibration in Rectangular Rooms. J. Audio Eng. Soc., vol.37, nº3, March 1965. p.413-423.
- SMITH, PETERS, R. J., OWEN, S. Acoustics and Noise Control
- STRUBE, Hans Werner. Diffaction by a planar, locally reacting, scattering surface. J. Acoust. Soc. Am., vol.67, nº2, Feburay 1980. p.460-469.
- STRUBE, Hans Werner. Scattering of a plane wave by a Schroeder diffusor : a mode-matching approach. J. Acoust. Soc. Am., vol.67, n°2, Feburay 1980. p.453-459.
- TAKAHASHI, D. A design method for optimum acoustic diffusers. In: ANDO, Yoichi, NOSON, Dennis (Ed.) Music and concert hall acoustics. p.183-190
- TAKAHASHI, D. J. Acoust. Soc. Jpn (E). 16, 51 (1995).
- TAKAHASHI, D. Proc. Sabine Symposium, p. 149. ASA, Boston (1994).
- TAKAHASHI, D. Theoretical investigation for sound absorption of QRD. Tec. Rep. Archit. Acoust. Soc. Jpn, AA94-3 (1994) (in Japanese).
- VALADARES, Victor M. Avaliação simplificada de desempenho acústico de salas utilizadas para concertos em Belo Horizonte. In: ENCONTRO DA SOCIEDADE BRASILEIRA DE ACÚSTICA, 19, 2000, Belo Horizonte. **Anais...** p.487-492.
- WALKER, R. & BAIRD, M.D.M. **Modular acoustic diffuser** : the development and performance of a modular acoustic diffuser. Research and Development Report, BBC RD 1995/1. BBC Research & Development Department : Surrey, 1995.
- WATTERHOUSE, Richard V., COOK, Richard K. Interference Patterns in Reverberant Sound Fields. II J. Audio Eng. Soc., vol.37, n°3, March 1965. p.424-428.
- WEBERN, Anton. Chemin vers la nouvelle musique. Tradução do alemão : Anne Servant, Didier Alluard, Cyril Huvé. Paris : Jean-Claude Lattès, 1980. 170p. (Collection Musiques et musiciens, dir. Odile Cail)
- WU, T., COX, T. J., and LAM, Y. W. A profiled structure with improved low frequency absorption. J. Acoust. Soc. Am., vol.110, n°__, ____ 2001. p.3064-3070.
- WU, T., COX, T. J., and LAM, Y. W. From a profiled diffuser to an optimased absorber. J. Acoust. Soc. Am., vol.108, n°2, 2000. p.643-650.