
Andante:
Composition and Performance with Mobile Musical Agents∗

Leo Kazuhiro Ueda† and Fabio Kon
Department of Computer Science

Institute of Mathematics and Statistics – University of São Paulo
http://gsd.ime.usp.br/andante

{lku,kon}@ime.usp.br

Abstract

Across the Centuries, musicians have always had interest in
the latest scientific achievements and have used the latest
technologies of their time to produce musical material. Since
the mid-20th Century, the use of computing technology for
music production and analysis has been increasingly com-
mon among music researchers and composers. Continuing
this trend, more recently, the use of network technologies in
the field of Computer Music turned out to be a natural re-
search goal. Our group is investigating the use of mobile
agent technology for the creation and performance of music
within a distributed computing environment. We believe that
this technology has the potential to foster new ways of com-
posing, distributing, and performing music.

This paper describes a prototype implementation of
Andante, an open-source infrastructure for the construction
of distributed applications for music composition and perfor-
mance based on mobile musical agents. We also describe two
sample applications built using this infrastructure.

1 Introduction

Composers have always looked at contemporary scientific
achievements to devise new forms of producing their art. The
traditional Western music itself went through changes as new
forms of producing sound were being discovered and new in-
struments were being devised.

Over the past decades, we have witnessed an astonishing
development of Computer Science that has led to an intensifi-
cation of this relationship between Music and Science (Roads
1996). In recent years, the network technologies, especially

∗Partially supported by a grant from CNPq, Brazil, process number
55.2028/02-9.

†Partially supported by a graduate fellowship from CAPES, Brazil.

the Internet, brought us many new possibilities for music
making.

In this context, we are interested in discovering how
an advanced concept in Computer Science, namely, mobile
agents, can be applied to introduce new forms of musical
composition, distribution, and performance.

The Andante project offers a software infrastructure
which allows the construction of distributed applications that
use mobile musical agents to compose and perform music.
Using Andante, programmers can write their own agents in
order to build such applications. We are currently working
with composers and researchers in writing musical pieces and
it is our wish to attract the interest of more people to use this
infrastructure for conducting musical experiments.

In (Ueda and Kon 2003), we introduced the Andante
project describing preliminary implementations of both the
infrastructure and the first sample application. In this paper,
we give more details of the infrastructure architecture and
describe the latest, more mature implementation, including
changes and extensions incorporated in the past months and
a new, more sophisticated sample application.

Before that, in Section 2, we describe the mobile agents
model in the context of distributed systems in order to define
the concept of mobile musical agent in Section 3. Section 4
describes the infrastructure and Section 5 the two sample ap-
plications build on top of the infrastructure. In Section 6 we
discuss the next steps of our research.

2 Mobile Agents

A mobile agent is a computer program that can inter-
rupt its execution on a host, migrate to another host travel-
ling through a network, and resume its execution on the new
host (Kotz and Gray 1999). It is an autonomous program in
the sense that it can decide itself to migrate and it may react
to changes on the host environment.

This concept, introduced in the mid-90’s (Johansen et al.
1994), brought a new paradigm for the construction of dis-
tributed and mobile computer systems. In the end of the
same decade, solid mobile agent systems began to appear
(Johansen et al. 1995; Johansen et al. 2002; Gray et al. 1998;
Lange and Oshima 1998).

The mobile agent model may lead to more complex sys-
tems, but it brings several advantages (Lange and Oshima
1999) over the traditional models of distributed computing
(like the client/server and distributed objects paradigms).
Some are commented below.

• Reducing network load and overcoming network la-
tency: distributed systems use communication proto-
cols that often involve a considerable amount of mes-
sage exchange through the network. When using mo-
bile agents, however, the program migrates to the target
host and hence the message exchange happens locally.
The traffic is reduced to the agent migration and the
network latency no longer applies.

• Autonomous and asynchronous execution: after migrat-
ing to another host, a mobile agent may become inde-
pendent of the application that created it, enabling it to
execute autonomously and asynchronously. Applica-
tions that rely on fragile connections may benefit from
this because it is not necessary to maintain an open con-
nection between the parts.

• Dynamic adaptation: mobile agents can receive infor-
mation about their executing environment and react to
changes.

In spite of that, there is no killer application for mobile
agents, every mobile agent application can be implemented
using traditional models. Even so, perhaps the most impor-
tant contribution of the mobile agents is the introduction of a
new paradigm that allows the construction of innovative sys-
tems and offers different approaches to known problems.

3 Mobile Musical Agents

We define a mobile musical agent (or simply agent from
now on) as a mobile agent which participates in a musical
process. It may do so by performing one or more of the fol-
lowing activities.

Encapsulating an algorithm: as a computer program, an
agent can carry algorithms, in particular composition
algorithms (Miranda 2001; Roads 1996; Rowe 1993).
These algorithms may also require input data that may
be carried with the agent or generated by it, allowing
the agent to produce music autonomously.

Interacting and exchanging information with other agents:
similarly to a situation where real musicians play to-
gether on a stage, several agents can interact with each
other exchanging musical information.

Interacting with real musicians: an agent can receive com-
mands or audio/musical data from a real musician. The
commands could be as simple as notes played by the
musician on a MIDI keyboard or new parameters for
an algorithm executed by an agent. The agent could
also receive the audio from an acoustic instrument and
process or reproduce this sound.

Reacting to sensors: agents can receive commands from
other non-agent programs. These commands could be
triggered by sensors so that the agents could react to
events in the real, physical world like the movements
of a ballerina on the stage or the activity of the public
in a museum.

Migrating: a migration process can be set off by the above
actions. In other words, the agent can decide to migrate

• stochastically or deterministically, based on an al-
gorithm;

• based on the interaction with other agents;

• based on the interaction with musicians;

• by reacting to sensors.

An agent that migrates resumes its performance when
it arrives at its destination, which can be either in the
same room or in another room, city, or country.

We can build musical systems using the model described.
See a few examples below.

1. Stochastic melodies: in this system, the agents encap-
sulate a stochastic algorithm that generates a melody. A
system component or one of the agents may work as a
metronome, giving the other agents the correct timing.
The result of the performance of several such agents in
the same host would sound as synchronized stochastic
music.

2. Distributed performance: each human musician is rep-
resented by one or more agents. Each agent receives
the music played by the musician it represents and re-
produces it in real time in the computer where it is
hosted. In this system, a musician can be virtually
present on more than one stage at the same time. These
agents could be used to conduct a distributed perfor-
mance: each musician in a different location receives
agents representing other musicians in his computer
and sends his agents to the computers of the other mu-
sicians.

3. Collaborative music: in systems such as DASE (http:
//www.soundbyte.org), users interact and exchange
audio files through the network in order to compose a
collaborative musical piece. A mobile musical agent
system could use this same idea, except that the users
would implement and dispatch their own autonomous
musical agents, which would interact with each other.

4. Interactive music system: the association of mobile
musical agents with interactive music systems (Rowe
1993) is natural, considering that an agent may receive
musical information and respond to it.

5. Distributed music: consider a museum or exhibit hall
equipped with several computers connected by a wire-
less network. Each computer could be equipped with
motion sensors and host a few agents. The agents
would communicate with each other and play a dis-
tributed music piece in a synchronized manner. A spe-
cific agent could receive information from motion sen-
sors in order to follow a person who walks around the
room (using its ability to migrate). The listener percep-
tion would be that part of the music is following him.
Another part of the music, on the other hand, could run
away from the listener, migrating to computers far from
where the listener is. Sounds generated by the public
(for example, a short speech) could be dynamically in-
corporated into the musical environment created by this
system.

We have contacted composers and researchers of contem-
porary music that have already shown interest in studying the
possibilities of the mobile agents application in music. This
collaboration will be essential for us to discover the real po-
tential of this technology.

The above examples also bring us computational prob-
lems related to real-time, latency, and quality of service. They
represent important open research problems that are beyond
the scope of our present work.

4 Andante

This infrastructure offers software components for a user
to build applications similar to the examples shown.

This section describes the infrastructure by discussing the
technologies employed, the architecture, and implementation
details.

4.1 Technologies

The whole system is written in Java for the following rea-
sons.

• Platform independence: we expect programmers, com-
posers, and instrumentalists to use our system. For this
to happen, we believe the system must run in distinct
software and hardware environments such as the ones
based on Linux (mostly used by programmers), Mac
OS (mostly used by composers), and Windows (mostly
used by instrumentalists). Java currently seems to be
the best alternative to build systems that easily run in
all these platforms.

• Java Swing: Java offers a solid library for the construc-
tion of graphical user interfaces. It is important for us
to build platform independent interfaces quickly.

• Multimedia support: the official implementation
of the Java Sound API (http://java.sun.com/
products/java-media/sound) does not fully suit
our needs yet, however, it allowed us to build the in-
frastructure prototype in a short time.

The sound generation is currently based on the MIDI
classes provided by the Java Sound API, therefore it is based
on the MIDI protocol. Nevertheless, we tried to avoid too
much influence from this protocol because of its known limi-
tations for sophisticated musical applications.

Although we have so far only used Java, we would also
like to allow parts of the system to interact with compo-
nents written in other programming languages. The reason
for this is to make possible to use other technologies for
sound generation other than the ones provided by the Java
Sound API. For example, we have started experiments with
the MAX/MSP environment. We are writing a Java class
that communicates with a MAX/MSP patch. For this we
are using the OpenSound Control protocol (Wright and Freed
1997) support for MAX/MSP built by the CNMAT (http:
//www.cnmat.berkeley.edu/OpenSoundControl).

We are also using the CORBA (OMG 2002) middleware,
which allows programs written in different languages and
running on different operating systems to communicate to
each other seamlessly. All the communication among the
components of our system is performed via CORBA. This
will allow us to integrate the Andante infrastructure with sys-
tems such as CSound (Boulanger 2000), written in C, and
Siren (Pope and Ramakrishnan 2003), written in Smalltalk.

Our infrastructure is built on top of the Aglets Software
Development Kit (ASDK). Aglets (Lange and Oshima 1998)
is a mobile agent system, written in Java and originally
developed by IBM (http://www.trl.ibm.com/aglets).
It is currently an open source project (http://aglets.
sourceforge.net), offering libraries and applications to
implement and manage Java mobile agents.

4.2 Architecture

An agent performs its actions in a heterogeneous com-
puter network environment. The computers in this network
must run a host software that we call Stage. This software is
a component of the architecture, it represents a place where
multiple agents meet and interact.

The Stage also offers the means for the agents to perform
their actions. In particular, to produce sound, an agent needs
to use the Stage’s sound generation service. To provide this
service, the Stage uses another component of the architecture:
the Audio Device.

We have thus defined three key elements of the Andante
architecture: the Agent, the Stage, and the Audio Device.
Figure 1 depicts an abstract overview of the architecture.

An application
built on top of

the infrastructure

StageStage

Audio
Device

Audio
Device

Mobile
Musical
Agent

Mobile
Musical
Agent Mobile

Musical
Agent

Mobile
Musical
Agent

Agent
Proxy

Agent
Proxy

GUI

Audio
Device

Mobile
Musical
Agent

Mobile
Musical
Agent

Figure 1: Architecture overview

An additional element, the GUI, is shown in the figure.
It is not necessarily a component of the architecture, but it
is the main component of applications built on top of the in-
frastructure and plays the important role of supporting human
interaction with agents.

The application takes advantage of a fourth component of
the architecture: the Agent Proxy. This element provides lo-
cation transparency for the agents. When an agent migrates, it
informs its new location to its proxy, which in turn is respon-
sible for the communication between the agent and the GUI.
The GUI may also choose to communicate directly with the
agent, or to be the proxy for one or more agents itself.

4.3 Implementation

Figure 2 shows a UML (Booch et al. 1998) class dia-
gram of the architecture. The MusicalAgent class repre-
sents the mobile musical agent and the Stage class is re-
sponsible for hosting agents in a computer. All the instances
of these classes register themselves with the CORBA Nam-
ing Service (a centralized service) so that they can easily find
each other in the distributed system. Both classes are built

using the Aglets Software Development Kit, so they must be
written in Java.

The Stage offers services for the agents, the most impor-
tant are described below.

• channel: provides a channel of communication
through which sound generation request messages are
sent, similarly to the MIDI protocol (but not limited to
it). Each Stage has several available channels, each al-
lowing different settings (for example, the timbre used
to play notes).

• metronome: provides an object which works as a
metronome. This object receives registration requests
from agents and sends the pulse message to the regis-
tered agents at a regular time. The time interval be-
tween pulses is determined by the metronome time
signature and tempo properties, and all the registered
agents receive the pulse at (almost) the same time.

To implement a new kind of agent, the user of the in-
frastructure must implement messages of the MusicalAgent
class (some are already implemented). The most import mes-
sages are the following (see Figure 2 for their parameters).

• play: tells the agent to start or resume its performance.

• stop: tells the agent to interrupt its performance.

• set: sets the property propName to the value
propVal.

• pulse: if the agent is registered with a metronome, it
will receive this message at regular times, representing
the pulses of a certain tempo and time signature. The
agent is supposed to take an action when this happens.

• dispatch: tells the agent to migrate to the destination
determined by address.

The following code shows the implementation of a sample
Andante agent.

1 // Every mobile musical agent must extend

2 // ’MobileMusicalAgent’.

3 public class RandomMelodyAgent

4 extends MobileMusicalAgent

5 {

6 boolean play = false;

7 short [] cMaj = {60,62,64,65,67,69,71};

8 java.util.Random rand;

9 Channel channel;

10

11 // This message is sent right after the creation of this

12 // agent.

AgentProxy

+setAgent(id:string,ma:MusicalAgent)

GUI

Channel

+Number: int

+Instrument: int

+sendMessage(m:Message)

+noteOn(pitch:int,intensity:int)

+noteOff(pitch:int)

+playNote(n:Note)

AudioDevice

+sendMessage(m:Message)

+noteOn(pitch:int,intensity:int,channel:int)

+noteOff(pitch:int,channel:int)

+playNote(n:Note)

MusicalAgent

+set(propName:string,propVal:string)

+processNote(n:Note)

+play()

+stop()

+dispatch(address:string)

+pulse()

Stage

+channel(num:int): Channel

+metronome(): Metronome

Metronome

* 1

*

*

*

*

1*

*

*

* *
* 1

* 1

1

1

Figure 2: Architecture class diagram

13 public void init() {

14 rand = new java.util.Random();

15 channel = stage.channel(1);

16 play();

17 }

18

19 public void play() {

20 play = true;

21 int pitch, intensity, duration;

22

23 while (play) {

24 pitch = cMaj[rand.nextInt(cMaj.length)];

25 intensity = rand.nextInt(128);

26 duration = rand.nextInt(1000);

27 channel.noteOn(pitch, intensity);

28 try {

29 Thread.sleep(duration);

30 }

31 catch (InterruptedException ie) {}

32 channel.noteOff(pitch);

33 }

34 }

35

36 public void stop() {

37 play = false;

38 }

39 }

This agent plays a random melody generated in real
time. The following describes a scenario where the
RandomMelodyAgent is used.

• Agent implementation: we already have an implemen-
tation, the RandomMelodyAgent. We need now an in-
stance of this kind of agent, let us call it rmAgent.This
instance represents a single agent.

• Agent dispatch: after its creation, rmAgent must be sent
to an instance of Stage.

• Arrival procedure: when rmAgent arrives at the stage, a
number of actions are carried out by the infrastructure.
First of all, the inherited field stage (referred to in the
line 15 of the code) immediately begins to represent the
stage. Then, the message init is sent to rmAgent. In
this case, rmAgent gets a channel from the stage, which
is now represented by the field channel (also in the
line 15), and sends the message play to itself.

• Performance: as a result of the playmessage, rmAgent
begins its performance. It uses the operations of
channel to play random notes of the C major scale.

• Agent control: we have not done it here, but it is possi-
ble to implement a graphical interface to send messages
to rmAgent. In this case, it could be used to send the
stop message to the agent, or to dispatch it to another
stage.

5 Applications

The following two applications were built using the im-
plementation of the Andante infrastructure described in Sec-
tion 4. They intend to give a concrete demonstration of the
architecture viability.

5.1 NoiseWeaver

The NoiseWeaver application generates and plays
stochastic music in real-time. It uses only one kind of agent:
the NoiseAgent, which generates a single melody in real-
time. In the generated melody, simulations of selected types

of stochastic number generators determine the pitch, inten-
sity, and duration of the notes. We call this generators noise
because they simulate the frequencies that occur in the spec-
trum of 1

fβ noises. For example, a certain NoiseAgent could
play a melody in which the pitch of the notes is determined
by a sequence of numbers that simulates a pink noise. This
same agent could have a brownian noise sequence to deter-
mine the duration of the notes, and a white noise sequence
for the intensity. Restating, what we call noise is a number
sequence generated by a stochastic algorithm which is then
mapped to musical parameters of a melody. See the fractal
algorithm description in (Roads 1996) for more information
on this composition algorithm.

The agents also register themselves with the Stage
metronome service so that every agent in the same Stage gets
synchronized.

The NoiseWeaver provides a GUI to control NoiseAgents
hosted in several Stages. Before using the GUI, one must use
the infrastructure services to create Stages and create and dis-
patch NoiseAgents. Figure 3 shows the window that displays
the running Stages.

Figure 3: Available Stages

To control the NoiseAgents hosted in a Stage, the user has
to select the Stage and press “Manage”. A new window like
the one in Figure 4 will open.

Figure 4: Stage control interface

This interface lets the user change the metronome and
agents properties, even while the melodies are being gener-
ated.

The Metronome panel allows the user to define
metronome parameters. Tempo is in beats per minute;
Amount and Type define the time signature; and Play pulses
determines whether the metronome plays a note at every beat.
The Agents panel lists the NoiseAgents hosted in the Stage.
The Dispatch refers to the selected agent in the list and it is
used to tell the agent to migrate to another Stage.

When an agent is selected, the panel on the right hand
side of the window is activated. This panel allows the user
to change agent properties. The various properties that each
NoiseAgent holds influence the generation of its melody.

On the Commands panel, we have:

• Start: tells the agent to start (or resume) playing.

• Stop: tells the agent to stop playing.

And on the Properties panel we have:

• Pitch: PitchGenerator defines the type of noise which
generates the pitch of the notes. The selected noise
is used to generate integer numbers which are then
mapped to notes in the musical scale determined by
the Scale property. ScaleStart is the point where the
selected scale starts. The value 60 is equivalent to the
middle C (as in the MIDI protocol). The ScaleLength
determines the length (number of notes) of the chosen
scale.

• Intensity: IntensityGenerator defines the type of noise
used to generate note intensity (velocity, in MIDI ter-
minology). The intensity is an integer between 0 and
127, IntensityMin and IntensityMax determine the in-
terval of possible intensity values.

• Duration: DurationGenerator, DurationMin and Dura-
tionMax are the properties that define the note duration,
they are similar to the intensity settings. The duration
values are related to the metronome time signature.

• Channel: the channel to which the agent outputs its
melody.

• Instrument: the instrument (patch) to be used to play
the melody.

The possible values for the Generator properties are
Constant, White, Pink, and Brownian. For Scale,
we have Diatonic, WholeTone, Chromatic, HarmonicMi-
nor, HarmonicNatural, Pentatonic, Blues, PentaBlues, and
Hirajoshi.

Thus, using the NoiseWeaver, it is possible to have several
NoiseAgents playing a noise-based melody each, and control
the way all these melodies are generated using its GUI.

5.2 Maestro

The Maestro application is originally an extension of
the NoiseWeaver. Instead of being controlled by the
NoiseWeaver GUI, a distributed collection of NoiseAgents
may be controlled by the Maestro, which in turn is controlled
by a script. The main element of the script is the score, where
a user can determine time-stamped changes in the agents
properties. The Maestro offers a GUI to edit and run scripts
shown in Figure 5.

Figure 5: Maestro script interface

The script is composed of three sections, as shown in the
figure. The Declarations section defines the stages and agents
involved; the Initializations section lets the user set properties
prior to the beginning of the score execution; the Score sec-
tion is where the time-stamped property changes are defined.

It is important to state that the types of agents that can be
controlled by the Maestro are not limited to the NoiseAgent.
Any agent implemented in the Andante infrastructure may
be used. Also, the so called “property changes” are actually
messages of the MusicalAgent interface sent to a specific
agent. So let us see a less informal description of the script.

<Declarations> is a list of at least one <agent
declaration> and at least one <stage declaration>.

<Initializations> is a list of <message>.

<Score> is a list of <time-stamped message>.

<agent declaration>: ‘<Java class> <id>;’
<stage declaration>: ‘Stage <id> <stage name>;’
<message>: ‘<id> <message name> <parameters>;’
<time-stamped message>: ‘<timestamp> <message>;’

<Java class> is a name of an agent class.
<id> is a string not containing spaces nor ’;’.
<stage name> is the name of a Stage.
<message name> is a message of the MusicalAgent in-

terface.
<timestamp> is a positive integer.
<parameters> is a list of strings or quoted strings.

And, below, an example.

NoiseAgent a1;
NoiseAgent a2;
Stage s1 villa:4434;
Stage s2 lobos:4434;
-- # end of declarations
a1 set DurationMin 1;
a1 set DurationMax 120;
a1 set Scale Diatonic;
a1 set ScaleStart 36;
a1 set ScaleLength 12;
a1 set Channel 1;
a1 set Instrument 1;
a2 set PitchGenerator Pink;
a2 set Scale Diatonic;
a2 set ScaleStart 72;
a2 set ScaleLength 12;

a2 set Channel 2;
a2 set Instrument 36;
a1 dispatch s1;
a2 dispatch s2;
-- # end of initializations
1 a1 play;
5 a2 play;
13 a1 set IntensityMin 80;
13 a1 set Scale Chromatic;
17 a2 set DurationMax 2;
17 a2 set ScaleStart 60;
25 a1 dispatch s2;
25 a2 dispatch s1;
37 a1 stop;
37 a2 stop;
-- # end of score

In the Declarations section, two agents of the NoiseAgent

type are created and two stages are defined. They are later
be referred to by their identifiers (a1, a2, s1, and s2) in the
other sections of the script. In the following section, some
initial properties of the two agents are set (see Section 5.1)
and the agents are sent to different stages. The Score section
then defines the messages to be sent at specific moments. For
example, at moment 1 the agent a1 starts to play.

We have the collaboration of a composer who is currently
writing script examples that will be published in our web site.

Interactive Interface. As another extension, we built a
GUI very similar to the NoiseWeaver GUI, only that it can
control any kind of agent. See Figure 6.

The interface has three important additional features.

• Synchronize metronomes: makes the metronomes of all
stages send the pulse message at the same time.

• Agent creation: allows the user to create an agent with
an associated identifier.

• Generic property setting: when the agent is created, the
interface gets information about the agent’s properties.
It then uses this information to build the right hand side
panel dynamically.

Figure 6: Maestro interactive interface

6 Conclusion and Future Work

The Andante project expects to be more than a computer
system. We are hoping to create an open community where
artists and scientists collaborate to create musical ideas, mo-
bile musical agents, and to develop the enabling software in-
frastructure. To help this effort, we keep a site on the Internet:
http://gsd.ime.usp.br/andante.

With the initial prototype of the infrastructure imple-
mented, as shown in this paper, we are now moving the main
focus of the project in the direction of musical creation. Our
next steps will be guided by the interaction with composers.

We will continue the development of the infrastructure
and the applications as we plan to add new functionalities and
refinements.

Besides that, we plan to design and to build new appli-
cations to explore better the agent mobility and the human-
agent and agent-agent interactions. The mobility may take
place in a local network, where the computers are in the same
location, and also in an environment where the computers are
geographically distant. We intend to write musical pieces that
explore these possibilities.

To make sure that the pieces will perform correctly, it will
be necessary to implement the support for real-time and qual-
ity of service in the infrastructure. The idea is to allow the ap-
plications to define their system requirements (such as CPU
load, memory, network bandwidth, etc.) so that they execute
within acceptable time constraints. This support will be very
important to attract the interest of more users.

Finally, it would be really interesting to build a pro-
gramming environment based on visual models so that non-
programmer users could implement their own musical agents.
One such environment would be a challenging project related
to Andante to be engaged in the future.

References
Booch, G., J. Rumbaugh, and I. Jacobson (1998). The Unified

Modeling Language User Guide. Addison-Wesley.

Boulanger, R. (Ed.) (2000). The CSound Book. The MIT Press.

Gray, R. S., D. Kotz, G. Cybenko, and D. Rus (1998). D’Agents:
Security in a Multiple-Language, Mobile-Agent System. In
G. Vigna (Ed.), Mobile Agents and Security, Volume LNCS
1419, pp. 154–187. Springer-Verlag.

Johansen, D. et al. (1994, November). Operating system support
for mobile agents. Technical Report TR94-1468, Department
of Computer Science, Cornell University, USA.

Johansen, D. et al. (1995, June). An introduction to the TACOMA

distributed system version 1.0. Technical Report 95-23, Uni-
versity of Troms, Norway.

Johansen, D. et al. (2002, May). A TACOMA retrospective. Soft-
ware - Practice and Experience 32(6), 605–619.

Kotz, D. and R. S. Gray (1999, July). Mobile Agents and the
Future of the Internet. ACM Operating Systems Review 33(3),
7–13.

Lange, D. B. and M. Oshima (1998, August). Programming and
Deploying Java Mobile Agents with Aglets. Addison-Wesley.

Lange, D. B. and M. Oshima (1999, March). Seven good reasons
for mobile agents. Communications of the ACM 42(3), 88–
89.

Miranda, E. R. (2001). Composing Music with Computers. Ox-
ford (UK): Focal Press.

OMG (2002, July). CORBA v3.0 Specification. Needham, MA:
Object Management Group. OMG Document 02-06-33.

Pope, S. T. and C. Ramakrishnan (2003). Recent developments
in Siren: Modeling, control, and interaction for large-scale
distributed music software. In Proceedings of the 2003 Inter-
national Computer Music Conference, Singapore.

Roads, C. (1996). The Computer Music Tutorial. The MIT Press.

Rowe, R. (1993). Interactive Music Systems. The MIT Press.

Ueda, L. K. and F. Kon (2003, August). Andante: A mobile musi-
cal agents infrastructure. In Proceedings of the 9th Brazilian
Symposium on Computer Music, Campinas, Brazil.

Wright, M. and A. Freed (1997). Open SoundControl: A new
protocol for communicating with sound synthesizers. In Pro-
ceedings of the 1997 International Computer Music Confer-
ence, Thessaloniki, Greece.

