
1

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 1

Escape from the Spaghetti
Code Jungle

“Big Ball of Mud”
Brian Foote

Joseph Yoder
The Refactory, Inc

University of Illinois at
Urbana-Champaign

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 2

Big Ball of Mud
Alias: Shantytown, Spaghetti Code

A BIG BALL OF MUD is haphazardly structured,
sprawling, sloppy, duct-tape and bailing wire,
spaghetti code jungle.

The de-facto standard software
architecture. Why is the gap
between what we preach and
what we practice so large?

2

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 3

Global Forces

• Time

• Cost

• Experience

• Skill

• Visibility

• Complexity

• Scale

• Change

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 4

Where does Mud Come From

• Throwaway Code
• Legacy Mush
• Urban Sprawl
• Slash and Burn Tactics
• Merciless Deadlines
• Sheer Neglect

3

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 5

Worse is Better

• Ideas resembles Gabriel’s 1991
“Worse is Better”

• You had a tight deadline, did what it
takes to beat your competitor to
market.

• You don’t have to be the best to
win, only beat your competitor to
market.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 6

Software Tectonics

Reconstruction
• Major Upheaval
• Throw it away

Incremental Change
• Evolution
• Piecemeal Growth

4

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 7

Big Ball of Mud

You need to deliver quality software on
time, and under budget.

Therefore, focus first on features and
functionality, then focus on architecture
and performance.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 8

Big Ball of Mud
“Additional Forces”

Cost: Architecture is a long-term investment. It is
easy for the people who are paying the bills to
dismiss architecture, unless there is some tangible
immediate benefit, such a tax write-off.

Organization: With larger projects, cultural, process,
organizational and resource allocation issues can
overwhelm technical concerns such as tools,
languages, and architecture.

Skill: Ralph Johnson is fond of observing that is
inevitable that "on average, average organizations
will have average people".

5

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 9

Big Ball of Mud

Why does so much software, despite the best intentions
and efforts of developers, turn into BIG BALLS OF
MUD? Why do slash-and-burn tactics drive out
elegance? Does bad architecture drive out good
architecture?

What does this muddy code look like to the
programmers in the trenches who must confront it?
Data structures may be haphazardly constructed, or
even next to non-existent. Everything talks to
everything else. Every shred of important state data
may be global.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 10

Big Ball of Mud

As per CONWAY’S LAW [Coplien 1995],
architects depart in futility, while engineers who
have mastered the muddy details of the system they
have built in their images prevail. [Foote & Yoder
1998] went so far as to observe that inscrutable code
might, in fact, have a survival advantage over good
code, by virtue of being difficult to comprehend and
change. This advantage can extend to those
programmers who can find their ways around such
code.

6

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 11

Throwaway Code
(Killer Demo, Quick Hack,

Scripting, Killer Demo)

Sometimes this is the right
approach

There is the danger that such
code will take on a life of its
own

The original Wiki was an
example of Throwaway
Code.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 12

Throwaway Code
When you are prototyping a system, you are not
usually concerned with how elegant or efficient
your code is. You know that you will only use it to
prove a concept. Once the prototype is done, the
code will be thrown away and written properly. As
the time nears to demonstrate the prototype, the
temptation to load it with impressive but utterly
inefficient realizations of the system’s expected
eventual functionality can be hard to resist.
Sometimes, this strategy can be a bit too successful.
The client, rather than funding the next phase of the
project, may slate the prototype itself for release.

7

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 13

Throwaway Code
You need an immediate fix for a small

problem, or a quick prototype or proof
of concept.

Therefore, produce, by any means
available, simple, expedient, disposable
code that adequately addresses just the
problem at-hand.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 14

Throwaway Code Forces
Time, or a lack thereof, is frequently the

decisive force that drives programmers to
write Throwaway Code.

Quick-and-dirty coding is often rationalized
as being a stopgap measure. All too often,
time is never found for this follow up
work. The code languishes, while the
program flourishes.

8

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 15

Throwaway Code
THROWAWAY CODE is often written as
an alternative to reusing someone else’s
more complex code. When the deadline
looms, the certainty that you can produce a
sloppy program that works yourself can
outweigh the unknown cost of learning and
mastering someone else’s library or
framework.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 16

Piecemeal Growth

Iterative Incremental Development

Mir was designed to accommodate
maintenance and growth

• Core 1986
• Kvant 1 1987
• Kvant 2 1989
• Kristall 1990
• Spekter 1995
• Docking 1995
• Priroda 1996

9

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 17

Piecemeal Growth

Some cities were design with a
master plan such as Brasilia and
Washington DC.

Other cities, such as Houston
have grown without a plan.

There are problems with both ways.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 18

Piecemeal Growth

Master plans are often rigid,
misguided and out of date.
Users’ needs change with time.

Therefore, incrementally address
forces that encourage change and
growth. Allow opportunities for
growth to be exploited locally, as
they occur. Refactor unrelentingly.

10

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 19

Piecemeal Growth Forces
Change: The fundamental problem with top-

down design is that real world requirement
are inevitably moving targets. You can't
simply aspire to solve the problem at hand
once and for all, because, by the time you're
done, the problem will have changed out
from underneath you.

Aesthetics: The goal of up-front design is to be
able to discern and specify the significant
architectural elements of a system before
ground is broken for it.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 20

Piecemeal Growth
When designers are faced with a choice between
building something elegant from the ground up,
or undermining the architecture of the existing
system to quickly address a problem,
architecture usually loses. Indeed, this is a
natural phase in a system’s evolution [Foote &
Opdyke 1995]. This might be thought of as
messy kitchen phase, during which pieces of the
system are scattered across the counter, awaiting
an eventual cleanup. The danger is that the clean
up is never done.

11

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 21

Keep It Working
Alias: VITALITY, BABY STEPS, DAILY

BUILD, FIRST, DO NO HARM,
CONTINUOUS INTEGRATION

We can’t have it stop working so how do
we cleanup problem areas

This fix might break something

Microsoft has a daily build and you never
put anything into the code base that
doesn’t work

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 22

Keep It Working

Maintenance needs have accumulated,
but an overhaul is unwise, since you
might break the system.

Therefore, do what it takes to
maintain the software and keep it
going. Keep it working.

12

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 23

Keep It Working Forces

Workmanship: Architects who live in the
house they are building have an obvious
incentive to insure that things are done
properly, since they will directly reap the
consequences when they do not.

Dependability: These days, people rely on our
software artifacts for their very livelihoods,
and even, at time, for their very safety.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 24

Keep It Working

Another vital factor in ensuring a system's
continued vitality is a commitment to
rigorous testing [Marick 1995][Bach 1994].
It's hard to keep a system working if you
don't have a way of making sure it work.
Testing is one of pillars of Extreme
Programming. XP practices call for the
development of unit tests before a single
line of code is written.

13

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 25

Shearing Layers

Requirements and technology is
constantly changing

Who (Business Person, Analyst, Developer)
What (Business Rule, Persistence Layer,…)
When (How often, How fast)

There is a different rate of change on
the system.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 26

Shearing Layers

Systems and their constituent elements
evolve at different rates. As they do, things
that change quickly tend to become distinct
from things that change more slowly.

SHEARING LAYERS that develop between
them are like fault lines or facets that help
foster the emergence of enduring
abstractions.

14

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 27

Shearing Layers

Different artifacts change at different
rates.

Therefore, factor your system so that
artifacts that change at similar rates
are together.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 28

Shearing Layers Forces

Adaptability and Stability are forces that
are in constant tension. On one hand,
systems must be able to confront
novelty without blinking. On the
other, they should not squander their
patrimony on spur of the moment
misadventures.

15

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 29

Shearing Layers
Accepting Changes

Part of the impetus behind using
METADATA [Foote & Yoder 1998] is the
observation that pushing complexity and
power into the data pushes that same
power (and complexity) out of the realm of
the programmer and into the realm of users
themselves. Metadata are often used to
model static facilities such as classes and
schemas, in order to allow them to change
dynamically.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 30

Sweeping It Under the Rug
Alias: Pretty Face, Façade, Housecleaning

“You may not know how to get rid of a
problem, but at least you can cordon it
off…”

16

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 31

Sweeping It Under the Rug

The first step on the road to
architectural integrity can be to
identify the disordered parts of the
system, and isolate them from the rest
of it. Once the problem areas are
identified and hemmed in, they can be
gentrified using a divide and conquer
strategy.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 32

Sweeping It Under the Rug

Overgrown, tangled, haphazard spaghetti code is
hard to comprehend, repair, or extend, and
tends to grow even worse if it is not somehow
brought under control.

Therefore, if you can’t easily make a mess go away,
at least cordon it off. This restricts the disorder
to a fixed area, keeps it out of sight, and can set
the stage for additional refactoring.

17

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 33

Sweeping It Under the Rug
“Additional Forces”

Comprehensibility: It should go without saying that
comprehensible, attractive, well engineered code
will be easier to maintain and extend than
complicated, convoluted code.

Morale: Indeed, the price of life with a BIG BALL OF
MUD goes beyond the bottom line. Life in the
muddy trenches can be a dispiriting fate. Making
even minor modifications can lead to maintenance
marathons.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 34

Sweeping It Under the Rug

Overgrown, tangled, haphazard spaghetti code is
hard to comprehend, repair, or extend, and
tends to grow even worse if it is not somehow
brought under control.

Therefore, if you can’t easily make a mess go away,
at least cordon it off. This restricts the disorder
to a fixed area, keeps it out of sight, and can set
the stage for additional refactoring.

18

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 35

Reality of Software
“Build one to throw away.” - Fred Brooks

You will never get it right the first time
• Can’t understand the problem domain
• Can’t understand user requirements
• Can’t understand how the system will change

Result
• Original design is inadequate
• System becomes convoluted and brittle
• Changes become more and more difficult

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 36

Refactoring

Refactoring is the engine of Consolidation

Refactorings are program transformations that
preserve program semantics, while improving

structure
Refactoring has traditionally been done by hand, but

tools are starting to emerge
Languages differ significantly in the degree to which

they support refactoring

19

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 37

Definition of Refactoring

vt. - The process of redesigning the
abstractions in a program

n. - A behavior-preserving source-to-source
program transformation

Interface design and functional factoring constitute the key intellectual
content of software and are far more difficult to create or re-create than
code. - Peter Deutsch

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 38

A Simple Refactoring

Object

Concrete1 Concrete2

Object

Concrete1 Concrete2

NewAbstract

Create Empty Class

20

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 39

A Complex Refactoring

Array

Matrix

Matrix

MatrixRep

ArrayRep

rep

SparseRep IdentityRep

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 40

Where Refactorings Come From

Application Maintenance
Application Extension
Application Development
Framework Development

“Refactoring often applies Design Patterns”

Can help clean up Big Balls of Mud!

21

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 41

Design Patterns

What varies Design Pattern

Algorithms Strategy, Visitor

Actions Command

Implementations Bridge

Response to change Observer

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 42

Design Patterns

What varies Design Pattern

Interactions between objects Mediator

Object being created Factory Method, Abstract
Factory, Prototype

Structure being created Builder

Traversal Algorithm Iterator

Object interfaces Adapter

Object behavior Decorator, State

22

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 43

Reconstruction

(Total Rewrite, Demolition)

Atlanta’s Fulton County
Stadium was built in 1966
and demolished
in 1997.

Two single purpose stadia,
with skyboxes, are
replacing it

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 44

Reconstruction

Extreme Programming [Beck 2000] had its
genesis in the Chrysler Comprehensive
Compensation project (C3). It began with a cry
for help from a foundering project, and a
decision to discard a year and a half's worth of
work. The process they put in place after they
started anew laid the foundation for XP, and
the author's credit these approaches for the
subsequent success of the C3 effort.

23

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 45

Reconstruction

Your code has declined to the point
where it is beyond repair, or even
comprehension.

Therefore, throw it away it and start
over.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 46

Reconstruction Forces

Obsolescence: Of course, one reason to abandon a
system is that it is in fact technically or
economically obsolete.

Change: Even though software is a highly malleable
medium, new demands can, cut across a system’s
architectural assumptions in such a ways as to
make accommodating them next to impossible.

Cost: Writing-off a system can be traumatic, both to
those who have worked on it, and to those who
have paid for it.

24

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 47

Reconstruction Discussion

Sometimes it’s just easier to throw a system
away, and start over. Examples abound. Our
shelves are littered with the discarded
carcasses of obsolete software and its
documentation. Starting over can be seen as
a defeat at the hands of the old code, or a
victory over it.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 48

Silver Buckshot

There are no silver bullets
…...Fred Brooks

• Objects
• Frameworks
• Patterns
• Architecture
• Process/Organization
• Tools

25

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 49

UIUC Patterns Group
Software Architecture Group

Ralph Johnson’s Group
• Objects
• Reuse
• Frameworks
• Adaptive Architecture
• Components
• Refactoring
• Evolution
• Patterns

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 50

Our Perspective

Objects, Patterns, Frameworks, and
Refactoring really do work, and can lead
to the production of better, more
durable, more reusable code

To achieve this requires a commitment to
tools, architecture, and software
evolution, and to people with superior
technical skills and domain insight

26

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 51

Adaptive Object-Models
Separates what changes from what doesn’t.
Architectures that can dynamically adapt to

new user requirements by storing descriptive
(metadata) information about the business
rules that are interpreted at runtime.

Sometimes called a "reflective architecture" or
a "meta-architecture ".

Highly Flexible – Business people
(non-programmers) can change it too.

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 52

Draining the Swamp

You can escape from the
“Spaghetti Code Jungle”

Indeed you can transform the landscape
The key is not some magic bullet, but a
long-term commitment to architecture,

and to cultivating and refining quality
artifacts for your domain!

27

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 53

Bird on
Patterns

Learn the
patterns and
then forget ‘em
-- Charlie Parker

http://www.hillside.net

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 54

The Refactory principles are experienced in software
development, especially in object-oriented
technology. We've been studying and developing
software since 1973. Our current focus has been
object-oriented technology, software architecture,
and patterns. We have developed frameworks using
Smalltalk, C++, and Java, have helped design several
applications, and mentored many new Smalltalk, Java,
and C++, C# developers. Highly experienced with
Frameworks, Software Evolution, Refactoring, Objects,
Flexible and Adaptable Systems (Adaptive Object-
Models), Testing, Workflow Systems, and Agile
Software Development including methods like eXtreme
Programming (XP).

The Refactory, Inc.

28

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 55

The Refactory Principals
John Brant
Brian Foote

Ralph Johnson
Don Roberts
Joe Yoder

Refactory Affiliates
Dragos Manolescu

Brian Marick
Bill Opdyke

Escape from The Spaghetti Code Jungle – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 56

Contact Information

Joseph Yoder
The Refactory, Inc.

7 Florida Drive
Urbana, IL 61801
(217) 344-4847

http://www.joeyoder.com
http://www.refactory.com
yoder@refactory.com

