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Abstract. Applications that use CORBA as communication layer often
have some restrictions for multi-domain deployment. This is particularly
true when they have to face firewall/NAT traversal. Furthermore, nowa-
days there isn’t a well-accepted unique or standardized solution adopted
by all ORBs, compelling applications using this middleware to use pro-
prietary solutions that sometimes do not address the environment re-
strictions in which they are deployed (e.g. impossibility to open firewall
ports). This work presents and compares three solutions for firewall/NAT
traversal by CORBA-based distributed applications, each one suitable
for a specific situation and exploring its advantages. Examples of such
situations are the possibility of opening firewall ports or the possibility
of starting a TCP connection to the outside network.

1 Introduction

From its beginning, the CORBA specification [Group, 2004a]
[Henning and Vinoski, 1999], [Bolton and Walshe, 2001] was designed aim-
ing to offer to developers a reduction of the complexity of developing distributed
object-oriented applications. However, in the meantime the Internet has seen a
vertiginous growth in the number of hosts and users, and unfortunately, also a
growth of misuse and attacks to networks and the need to protect them. One of
these countermeasures has been the extensive use of firewalls [Tanenbaum, 2003]
to control in-bound and out-bound traffic to/from a protected network.

So far, firewalls and CORBA applications have coexisted quite well since the
latter are usually deployed either in a single administrative domain, or only
among domains of partner institutions/companies. However, problems occur
when they are required to cross network barriers. The reason is that firewall/NAT
crossing conflicts with following two CORBA features: location transparency and
peer-based communication model [Group, 2004b].

The first feature allows clients to be unaware of the exact localization of a
server object when making a remote invocation to it. These server objects can
change their location without breaking existing references to them. Although
this feature can be seen as a simplification from the viewpoint of the application
developer, for firewall traversal this is a great problem since firewalls usually
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control in-bound traffic through a set of rules controlling which address-port
pairs are allowed to be reached. To enable a change of server object location,
the firewalls rules would have to be updated, so that the permission to cross the
network boundaries would work.

The peer-communication model also conflicts with deployment of firewalls
because it incurs into a high number of servers that consequently would require
a great number of firewall rules. However, this turns out to be an unacceptable
administrative burden, and would also significantly reduce the communication
performance across the firewall. With CORBA this problem arises when there
are a high number of ORBs deployed in the internal network (objects inside a
single ORB often share a pair address/port).

Yet another problem related to inter-domain CORBA applications happens
when the internal network uses NAT 1 [Tanenbaum, 2003]. This service creates
an isolated IP address space inside the network and prohibits these addresses to
be used in the external network. When an internal host has to send messages
to the outside network, an element (usually the firewall) maps their local ad-
dresses to a few public addresses belonging to the administrative domain of the
organization. The problem arises when a CORBA object that resides in a NAT
network exports its IOR [Henning and Vinoski, 1999]. In the IOR the NAT ad-
dress specified at IIOP profile doesn’t make sense in the external network since
it is not a public address, and cannot be used for routing.

This paper describes our work attempting to address the problem of fire-
wall/NAT traversal by CORBA applications, which was driven by the following
implicit requirements of acceptable solutions:

– it must not burden the firewall administration (if possible even do not require
any configuration);

– as much as possible, it must be easy to configure and be transparent to the
application developer;

– it must not have significant negative impact on the application performance.

Thework is inserted in the scope of InteGradeProject [Goldchleger et al., 2003]
which is a middleware for grid computing. It usesCORBAasmiddleware and needs
the firewall/NAT traversal capability.

In our work we proposed, implemented and evaluated three possible solu-
tions to this problem, where each of them assumes specific situation (or de-
gree) of firewall configurability. The remainder of the paper is organized as
follows: Section 2 presents the three proposals and Section 3 discusses imple-
mentation details of each proposal. Section 4 contains our evaluation of the
three approaches and presents some results of our tests analyzed. In Section 5
we survey related work in this topic, and compare them with the proposals pre-
sented here. Finally, in Section 6 we draw some concluding remarks and future
work.

1 Network Address Translation.
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2 Firewall/NAT Traversal Proposals

In networks protected by firewalls/NAT, distributed applications can face dif-
ferent scenarios of access permissions to the outside network. These can range
from the plain possibility of opening TCP connections to the outside network
to the total prohibition of establishing any kind of connection except HTTP
connections through a proxy.

Similarly, network security policies (and the negotiation willingness of network
administrators) vary a lot. In some cases, it is relatively easy to get a single port
at the firewall opened, but in many cases such concession is extremely difficult.

In the following we describe three approaches for CORBA firewall/NAT
traversal, each of them being suited to a different level of network access per-
mission. The idea is that the application deployer should be able to choose the
most appropriate alternative and configure her application accordingly using an
XML configuration file (described in Section 3.1).

2.1 OMG Approach

The first approach is based on the OMG specification for CORBA firewall traver-
sal [Group, 2004b] presented at Section 5.1. It addresses the situations where the
server object is not allowed to receive connections from the outside network, or
stated the other way round, the client ORB is disallowed to create connections
to any host in a foreign protected network.

This approach requires a single port to be opened at the firewall, which is
used to drain all the IIOP traffic crossing the network boundaries. Within the
protected network, all this in-bound traffic is directed to an application proxy
[Group, 2004b], which listens at the opened firewall port and is responsible for
forwarding these messages to the intended host. Similarly, all out-bound IIOP
traffic is first routed to the application proxy which will use the opened IIOP
port to send the messages to its final destination. Hence, a single port needs to be
opened at the firewalls, which can be shared by several applications (Figure 1).

When a server object is to be deployed, it must somehow advertise the exis-
tence of its application proxy. According to the specification, this is done through
a tagged component which is to be added to the IIOP profile of the object’s IOR
and which contains references to all intermediaries (i.e. proxies) between the
external network (e.g. Internet) and the object ORB, including itself. Thus, in
the simplest and more common case, it would include only a reference to one
application proxy and the ORB. When the client ORB receives this IOR it has
to identify this tagged component and create a GIOP NegotiateSession message
mentioning all the elements between itself and the server object ORB, includ-
ing the server object ORB and any other intermediary, excluding itself. This
message is then sent sequentially to all of the intermediaries mentioned in the
IIOP profile, from the first to the last before the server object (i.e. the server
application proxy). If the message succeeds in reaching this last element, it will
send a reply to the client ORB announcing that the client is allowed to send
normal GIOP messages (Request, Reply, . . . ).
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Fig. 1. OMG Approach

In addition, in this approach both the server and client must inform their
ORBs of the existence of an eventual application proxy. This is done through a
XML configuration file (see Section 3.1) which contains all information needed
to build the tagged component and the GIOP NegotiateSession message, by the
object ORB and the client ORB, respectively.

This solution has the advantage enabling the interoperability among different
ORBs that follow the OMG standard. However, the major drawbacks are the
need of a firewall configuration and that the client ORB must be able to properly
recognize and handle these new IIOP elements added by the specification.

2.2 TCP Proxy Approach

This approach is intended for server objects that cannot receive connections
from elements located outside network, but which may create TCP connections
with them.

The main idea is to deploy a proxy (from now called TCP proxy, due to the
specific transport protocol used) at the outside network and make the object
ORB within the protected network connect to it at startup and keep this con-
nection as long as it wishes to remain reachable from the outside network. The
object ORB sends a registration message to the TCP proxy for each CORBA ob-
ject exported, and receives an IOR to be published. This IOR contains a proxy’s
endpoint, and every client using this IOR contacts the proxy as if it were the ob-
ject ORB. The proxy then forwards the request to the destination ORB through
the TCP connection opened at ORB startup. Through this connection it also re-
ceives the replies for the requests, and forwards them to the intended client ORB
(see Figure 2). In this figure, the arrows labeled with 1 show the connections
opened by object ORBs at startup, while the arrow labeled with 2 represent the
connection made by a client ORB after it has received the object’s IOR.

Two kinds of connections to the proxy are made by the object ORB. The
first one is a short-lived connection created when the ORB needs to register an
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Fig. 2. TCP Proxy Approach

object at the proxy. It is used only for sending the registration message and
receiving of the reply containing the IOR to be published.

Hence, during the ORB lifetime many such connections may be made. The
second type is a long-lived connection that is made after the first successful
object registration. It will be used to receive/send the requests/replies for the
objects that have already been or (will be) registered. After the initial hand-
shaking, normal GIOP messages are sent through this single connection shared
by all objects. In what follows, we will call them registration connection and data
connection, respectively.

Apart from the fact that a registration must be done at each CORBA object
creation, the remaining processing is transparent to the object ORBs: after the
the data connection is opened, all request processing is done as if this connec-
tion were a normal ORB listen connection with normal GIOP messages passing
through it. From the client ORB perspective this is also totally transparent, and
no modification whatsoever is required.

An important issue concerns the request IDs used in GIOP Request and Reply
messages. According to the CORBA specification [Group, 2004a] this field is used
to match requests and replies messages sent over the same connection, and it is
the client’s responsibility to assign ids correctly in order to avoid ambiguities, e.g.
ids for requests which have been canceled, or which have pending replies, must
not be reused. Since in this approach, the proxy plays the role of a client of the
object ORB and forwards requests, request ids sent by the original clients cannot
be considered. This is because these ids will be sent over the same data connection
(between the proxy and the object ORB) and may cause ambiguities both at the
server ORB and the proxy. Hence, the proxy must generate new request IDs and
keep a mapping between the original and the new IDs to replace the new ID with
the original ID in reply messages forwarded to the corresponding client ORB.

The main advantage of this approach is that it does not require any fire-
wall/NAT configuration, as long as a connection to the outside network can be
made and sustained. Other positive points are the transparency to clients and
the ease to modify the object ORB to support this approach (i.e. once the data
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connection is open, it is treated as a trivial GIOP listen connection). The main
drawback is its lack of scalability at the proxy, as a connection must be kept
with each object ORB, but the number of connections are usually limited by the
underling operational system.

2.3 HTTP Proxy Approach

The third approach serves server objects in protected networks that can neither
get connections from elements at the outside network, nor create TCP connec-
tions with them, but where the only allowed connectivity to the external network
is by using HTTP protocol.

Similarly to the TCP Proxy (cf. Section 2.2) in this case a proxy (HTTP
Proxy2) is also deployed on the external network which will be contacted by the
client ORBs as if it were the CORBA object owner. Because the object ORBs
have the above mentioned access restriction, all its communication with the
proxy will use polling to the HTTP Proxy. Thus, in this approach object ORBs
send messages encapsulated in a HTTP request and receive the corresponding
HTTP reply containing the data requested by the encapsulated messages.

The first thing an object ORB must do is to register one or more CORBA
objects at the proxy by sending a HTTP request containing these registration
messages and receiving a HTTP reply with the object’s IORs to be exported.
The IOR created by the proxy will contain its (proxy) endpoint so that the
requests can be directed to it. When the proxy receives requests, it will store
them and wait for another HTTP request from the object ORB that registered
the CORBA object. Once this HTTP request arrives, the stored GIOP Requests
will be piggybacked on the HTTP reply sent to the ORB. In addition to object
registration request, the object ORB can also send three more types of message:
Remove, Reply and Polling. The first is a request to remove an object registry at
the proxy; the second is intended to carry a GIOP Reply of a previously received
GIOP Request. The third kind of message is used to ask the proxy whether it has
some GIOP Requests messages stored for the object. The Polling message thus
aims at implementing a periodic and continuous inspection of newly arrived
GIOP Requests. The polling periodicity (i.e. time interval) used by the ORB
must be set in the configuration file (cf. Section 3.1).

The proxy can send the following two types of messages to the object ORB:
RegisterReply and Request, where the former one acknowledges a previously
received register message, while the latter contains a GIOP Request received by
the proxy from a client ORB.

The HTTP messages can hold any number of encapsulated messages: a HTTP
request can have in its body any combination of the four previously described
message types, and the HTTP reply may have any combination of RegisterReply
and Request messages. This has the advantage of reducing the number of HTTP
messages exchanged between the proxy and the object ORB and of reducing the
latency of the GIOP request handling.

2 The name HTTP Proxy is due to the use of HTTP as transport protocol.
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As with the TCP Proxy approach, the HTTP Proxy also cannot directly use
the request IDs sent by the client ORBs and will generate new request IDs and
map them to the original IDs in other to properly forward the replies.

The main advantages of this approach are that it neither requires firewall/NAT
configuration (only the “usual” HTTP connectivity), nor any specific client ORB
configuration. Of course, its main disadvantage is the HTTP polling. Depending
on its periodicity polling either causes waste of network bandwidth, or decreases
the applications’ responsiveness. Yet another disadvantage is that it requires
more adaptations than the TCP Proxy Approach at the object ORB level (see
Section 3.4).

3 Implementation

In this section we discuss some issues related to the implementation of the ap-
proaches described in Section 2. In our implementation we used a lightweight
ORB called OiL [Cerqueira et al., 2005] that is written in the scripting language
Lua [Ierusalimschy, 2003] [LUA, 2005]. Like OiL, all the proxies are written in
Lua. We start describing the XML configuration file, which is common to all ap-
proaches, and then explain the implementation of each approach in some detail.

3.1 Configuration File

In order to deploy a CORBA application that should be able to traverse fire-
wall/NAT, the application developer must write a configuration file in XML. The
ORB is informed about the configuration file path through the global variable
FIREWALL TRAVERSAL CONF FILE.

The XML file has a root element called firewall-traversal with a single
mandatory attribute called choice. This attribute indicates which approach is
to be used, and can assume the values omg or proxy, where the latter represents
both the TCP and the HTTP proxy approaches. If the OMG approach is chosen,
child elements inbound-path and outbound-path will indicate if an in-bound
or out-bound (or both) path need to be traversed, and their child elements
will describe each host of the corresponding path. If proxy has been selected,
a mandatory child element named proxy defines the kind of proxy (TCP or
HTTP) and other parameters, such as host address, port and pooling interval
(in case of a HTTP proxy), as shown in the following example of a HTTP proxy
configuration file.

<?xml version=’1.0’?>
<!DOCTYPE firewall-traversal PUBLIC "Firewall Traversal
- LAC PUC-Rio" "http://www.lac.inf.puc-rio.br/~theophilo/
firewallTraversal/firewallTraversal.dtd">
<firewall-traversal choice="proxy">
<proxy type="http" address="145.72.24.240"

port="10012" polling-interval="1"/>
</firewall-traversal>
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3.2 OMG Approach

To implement the OMG Approach, (cf. Section 2.1), both the server and client
ORB required some modifications so that they were able to handle the new data
structures defined by OMG. Moreover, an application proxy had to be developed
in order to enable access to CORBA objects from the external network.

ORB. As explained in Section 2.1, the traversal information is carried in each
IOR through a tagged component in the IIOP profile. Since the tagged compo-
nent sequence (IOR field where the tagged components are stored) was defined
in IIOP version 1.1, the ORB must support it and also be able to handle the
elements defined in [Group, 2004b]. Since OiL didn’t have this support from the
beginning, we had to incorporate this feature in this ORB.

In the server-side ORB the only required modification was the creation of
the tagged component in the IIOP profile of the IOR. At each CORBA object
creation the ORB checks for any firewall traversal option and whether the OMG
Approach has been chosen. If this is the case, it reads some information from
the configuration file and uses it to create the tagged component. After that, all
the further processing is done as usual, and the server ORB will not be able to
distinguish if a request comes directly from a client or through the application
proxy.

The client-side ORB has to be modified as follows: before sending a remote
invocation message, it first has to check if the object’s IOR contains a tagged
component for firewall traversal, and if this is the case, a NegotiateSession mes-
sage has to be sent to the first element between the two. Only after a successful
reply, the normal request message can be sent. To avoid the building of the path
between the client and the server at each remote invocation, the client-side ORB
maintains a cache, saving the time of the IIOP profile and XML file configuration
analysis.

Application Proxy. The application proxy was developed with the purpose of
supporting multiple concurrent clients and not blocking on any I/O operation,
i.e. avoiding the blocking at any accept or receive operation [Stevens, 1998].
The concurrent handling of clients was implemented using Lua coroutines
[de Moura et al., 2004] [Ierusalimschy, 2003]. Figure 3 depicts the coroutines
within the proxy and their creation order: a main coroutine called dispatcher
is responsible for choosing the next coroutine to be executed, which also creates
and starts a second coroutine called listenClient which is responsible for listening
to new connections from client ORBs. Whenever a new connection is accepted
the listenClient coroutine creates and starts a new treatClient coroutine, which
will be responsible for handling all the communication between two ORBs, after
which it will be destroyed.

Both the listenClient and the treatClient coroutines return control to the dis-
patcher whenever they block at a network I/O operation. It is the dispatcher’s
responsibility to resume each such coroutine as soon as data arrives at the cor-
responding connection.
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Fig. 3. Application Proxy Coroutines

Problems Encountered. When developing the OMG Approach we encoun-
tered some problems due to the omission of some points in the OMG standard.
The first problem is related to the GIOP NegotiateSession message. Although
the firewall traversal specification mentions its existence, its definition is a refer-
ence to a yet unpublished section at [Group, 2004a]. Since the IDL definition of
this message could not be found, we created our own simple one, shown below:

struct NegotiateSession_1_3 {
IOP::ServiceContextList service_context;

}

The other omission problem relates to the existence or not of the service
context entry FIREWALL PATH in the GIOP messages Request and Reply. The
existence of this entry (created and used at NegotiateSession message) in these
messages would permit the reutilization of already opened connections among
proxies.

3.3 TCP Proxy Approach

To implement TCP Proxy Approach (cf. Section 2.2) we had to modify the server
ORB and to develop a TCP proxy. As this approach is transparent to the client,
no changes in its ORB were necessary.

ORB. The only modification required on the server-side ORB was to make it
register newly created CORBA objects at the proxy. At the first time (i.e. first
object registration) a data connection is also initialized and inserted in the list of
connections used for GIOP message listening. Thereafter, all processing is done
as usual. In order to give the application developer access to the object’s IOR
exported and used at external network, a new method called get ior exported
was included to the servant returned by the ORB.

Proxy. Like the OMG Application Proxy (Section 3.2), the TCP Proxy was
also implemented to handle concurrent requests using Lua coroutines. Figure 4
shows the different types of coroutines and their creation order. Here there is also
a main coroutine called dispatcher which is responsible to schedule the execu-
tion of the other coroutines. Its first action is to create two auxiliary coroutines
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Fig. 4. TCP Proxy Coroutines

called listenServer and listenClient, responsible for listening to new server and
client ORBs connections requests, respectively. Whenever a new connection is
established, it creates a new coroutine (treatServer and treatClient coroutines),
responsible for handling the communication with a server or a client ORB, re-
spectively.

The treatServer coroutine is in charge of handling either a server ORB request
to register an object at the proxy, or to open a data connection through which
GIOP messages will pass. In the first case, the coroutine is destroyed after the
registration is done. In the latter case, the coroutine remains during the lifetime
of the data connection, listening to new GIOP Reply messages and forwarding
them to the correct client.

On the other hand, the treatClient coroutine just waits for GIOP Request
messages, manipulates and forwards them to the correct server ORB. It is de-
stroyed when either the client closes the connection or sends a GIOP CloseCon-
nection message.

3.4 HTTP Proxy Approach

As the TCP Proxy Approach, in this one we have needed to modify the server
side ORB and to build the proxy to validate the solution.

ORB. The server side ORB modifications required in this approach are more
complex than the ones demanded in the TCP Proxy approach. At each CORBA
object creation, a registration must be done using HTTP protocol and the one
defined in the Section 2.3. The complexity comes out at the inspection for new re-
quests. In the TCP Proxy approach it suffices to add the data connection opened
to a list of connections that would go on a select operation [Stevens, 1998] due to
the fact that only GIOP messages are exchanged. Now a different approach must
be done because requests may arrive encapsulated in HTTP reply messages.

The original request listening process of OiL is very simple: the server appli-
cation calls a function called lo handleRequest that will listen for one GIOP
Request and reply it. If the application want to treat a infinite number of re-
quests it can put this call on an infinite loop. At ORB level, this function calls a
select operation on a list of connections to get a single request. This is the point
that must be modified: now the select operation on normal listening connections
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must be interleaved with HTTP polling to the HTTP Proxy. The polling in-
terval specified at configuration file (Section 3.1) must be honored and because
of this the select operation must have a timeout based on it. Other important
point to be noticed is that this HTTP polling can bring more than one request,
which compels the ORB to store the additional requests in order to be used in
subsequent invocations of the lo handleRequest function.

Proxy. The HTTP Proxy built to validate the solution is very similar to the
one developed in the Section 3.3. The architecture presented in Figure 4 is the
same of the HTTP Proxy: there is a coroutine responsible for the scheduling
of the others (dispatcher); two coroutines responsible for server and client lis-
tening (listenServer and listenClient); and others coroutines responsible for the
treatment of a single server or client (treatServer and treatClient).

4 Validation

Once implemented, we evaluated and compared the three approaches by making
some performance and scalability tests. For those tests, we run the ORB clients
on PCs (Intel Pentium IV 2,80 GHz with 1 GB RAM and running Linux) hosted
in two of our Labs (i.e. university sub-networks), and where each client made
invocations to a different server object. The server objects were executed on 13
machines (Intel Pentium IV 1,70 GHz with 256 MB RAM and running Linux)
of our graduate student lab (LabPos), which is protected by a firewall blocking
in-bound connections. The two sets of machines are interconnected by 100 Mbps
network with three routers between them.

4.1 Delay

In the first test, we measured the round-trip-delay incurred by each approach
when invoking firewall-protected objects. We created five firewall traversal con-
figurations, one for testing both the OMG Approach and the TCP Proxy Ap-
proach, two for the HTTP Approach with polling intervals O and 1 second, and
finally, one with without a proxy, i.e. by configuring the ORB port manually
at the firewall. This fifth configuration, called Direct, was used as a reference
measure, to evaluate the delay introduced by each proxy approach. For each
configuration, we made approximately 5.000 invocations, and obtained the re-
sults shown in Table 1, where columns Lower, Higher and Mean show the lowest,
highest and the mean values (in seconds) of the invocations.

As can be seen from the data, the fastest approach was the TCP Proxy Ap-
proach, whose delay on average has only 0.0022 seconds (59%) higher, and in
some cases even lower delay than the Direct configuration. Compared to the
OMG Approach, the main advantage of the TCP Proxy is the smaller number
of TCP connections required, and the fewer number of messages exchanged at
each invocation. Regarding the number of connections, in the OMG Approach, a
connection between the server object ORB and the proxy has to be established
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Table 1. Invocation Delay Tests Results

Measures
Approach Lower Higher Mean Std. Deviation
Direct 0.0023 0.0697 0.0037 0.0017
OMG 0.0083 0.3707 0.0351 0.0518
TCP Proxy 0.0036 0.0605 0.0059 0.0011
HTTP Proxy (0s) 0.0073 0.0384 0.0122 0.0024
HTTP Proxy (1s) 0.8762 1.0235 1.0127 0.0139

while in the TCP Proxy Approach such connection has already been opened
before at object registration (see Section 2.2). One can say that the TCP Proxy
Approach trades scalability (i.e. less number of simultaneous object handled by
the proxy due to a limited number of connections allowed) for a better per-
formance. Concerning the number of messages the OMG Approach is also less
efficient than the TCP Approach, since the GIOP protocol requires Negotiate-
Session messages to be sent and received between the client and the application
proxies. One should also notice the larger variation of the delay in the OMG
Approach, expressed by the standard deviation.

Even the HTTP Proxy Approach, using the 0s polling interval, has slightly
superior performance than OMG Approach, and presents less variation of delay.
However, one should not forget that the HTTP Approach has a greater impact
on network bandwidth due to the HTTP polling process.

In spite of the TCP Proxy Approach presenting up to 65% higher invocation
times, when compared with the Direct configuration, the absolute value is still
quite low. Moreover, for larger GIOP messages this overhead tends to become
even smaller, for example, if the remote method had more than just an integer
parameter and an integer result, as with our tests. Actually, we believe that more
tests would be necessary to evaluate how this overhead varies with the kind of
method being invoked.

4.2 Scalability

This test suite aimed at measuring the scalability of the approaches, i.e. how
the delay caused by the proxies varies with the number of simultaneous pairs
client/server interactions. The test scenario consisted of following configuration:
the server objects were deployed on the 13 machines (one object for each ma-
chine) of our graduate student lab sub-network (LabPos), which is protected
by a firewall and connected via one CISCO 7204 router to the network of our
other research lab, where the clients were deployed on a 54-node cluster (In-
tel Pentium IV 1,70 GHz with 256 MB RAM and running Linux). Each of the
clients executed on one cluster machine and made remote invocations to one of
the servers. We measured the mean round-trip delay for up to 54 simultaneous
client invocations (1 to 54 clients accessing 13 servers uniformly distributed) and
the results of this test are depicted in the Figure 5.



Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 939

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

in
vo

ca
tio

n 
tim

e 
(s

)

number of clients

Application Proxy

Concurrent
Sequential

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  10  20  30  40  50  60

in
vo

ca
tio

n 
tim

e 
(s

)

number of clients

TCP Proxy

Concurrent
Sequential

 0

 1

 2

 3

 4

 5

 0  10  20  30  40  50  60

in
vo

ca
tio

n 
tim

e 
(s

)

number of clients

Proxy HTTP

Concurrent
Sequential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60

in
vo

ca
tio

n 
tim

e 
(s

)

number of clients

Comparision Among the Proxies

Applicattion Proxy
TCP Proxy

HTTP Proxy

Fig. 5. Scalability Tests Results

The graphics of Figures 5.a, 5.b and 5.c show the delay measurements for the
proxies of the OMG, TCP Proxy and HTTP Proxy Approach, respectively (the
latter using a polling interval of 1 seconds). Each graphic compares the results
obtained with a hypothetical sequential proxy, i.e. a proxy that handles client
requests one at a time. As expected, in all approaches the concurrent version
shows a better performance than the sequential processing. But it is interesting
to notice also the reduction of the invocation delay of the HTTP Proxy with
the increase of the number of clients (Figure 5.c). This starts when the client
number is 14, and can be explained by the piggyback feature used in HTTP:
once there is more than one client per server (at 14 clients) the client requests
starts to arrive at the servers not by a polling reply, but as piggybacked on a
GIOP Reply sent over HTTP (see Section 2.3). This seems to be the main cause
of the delay reduction. The small delay remains until the proxy starts to become
saturated with requests, which in our tests happened with approximately 32.
Since in our tests we had 13 servers and a variable number of clients, the curve
seems to indicate that the lowest delay is obtained when the client/server ratio
is between 2 and 2.5. However, also here we believe that more tests should be
made in order to obtain a better understanding of the HTTP proxy saturation
behavior.
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The Figure 5.d compares the delays with the three proxies, showing that
the TCP proxy offers smallest increase of delay, albeit the usual server-side
connectivity limitations. However, the small difference between the delay increase
of the HTTP and the TCP approaches for large number of clients suggests
that the HTTP approach is a reasonable alternative when the server ORBs are
not allowed to open out-bound TCP connections. Moreover, the results suggest
that the HTTP Proxy is better already than the OMG Approach when the
client/server ratio is 1.9 or more.

5 Related Work

This section briefly describes related work on firewall traversal for CORBA ap-
plications, some of which inspired the present work.

5.1 OMG CORBA Firewall/NAT Traversal Specification

In 2004 the OMG published the CORBA Firewall Traversal Specifica-
tion [Group, 2004b], which was used as the basis for our OMG Approach (Sec-
tion 2.1).

The standard’s basic idea is to extend the GIOP/IIOP protocol with data
structures that enable server objects to provide information to clients and proxies
on how to open connections to reach them. According to the spec, server objects
that want to be reachable by external clients have to put a firewall traversal
component in their IOR’s tagged components sequence [Group, 2004a]. This
is a data structure that contains information about the endpoints of all hosts
between the server ORB (inclusive) and the external network (e.g. Internet)
which are be addressed in order to make the traversal. When a client gets such
an IOR it has to identify the firewall traversal component and build a GIOP
NegotiateSession message, which has a service context entry also holding the
information about all the hosts on the path between the client and server ORB.
The client then sends this message to the first element in the path, which then
gets forwarded by the hosts to the next ones on the path, until it reaches the last
proxy before the server ORB. If it arrives there, this last proxy positively replies
the NegotiateSession message to the previous proxy, which is then forwarded
back and all the way along reverse path. When this reply arrives at the client
the GIOP Requests/Reply messages can be exchanged normally.

This specification also provides others features, such as the support for secure
transport protocols, which so far we have not handled in our work.

5.2 JXTA

The JXTA Project [Brookshier et al., 2002] [Gradecki, 2002] [JXTA, 2005] is a
open source worldwide project created by Sun Microsystems intended to of-
fer an infrastructure for peer-to-peer application development. It consists of a
set of XML-based protocols that provide system and programming language
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independence. The JXTA peers form an ad-hoc network and information is ex-
changed using some peers (Rendezvous and Relay peers [Brookshier et al., 2002])
as providers and routers of the network.

JXTA claims to offer firewall traversal to applications that use it as the
communication layer. The solution offered is a set of public peers (Relay Peers)
accessible through HTTP protocol. After the protected peer registers itself at
one Relay Peer, the JXTA advertisement and routing engine will route the mes-
sages addressed to the protected peer to the Relay Peer at which it registered.
This Relay Peer stores the messages until the protected peer contacts it through
HTTP, using the fact that out-bound connections using this protocol are gen-
erally allowed by firewalls. The protected peers have to periodically make such
inquiry (called HTTP polling) which is used both to check for messages at the
Relay Peer and to send messages to the JXTA network.

At first, we took into consideration the idea of replacing the ORB commu-
nication layer by JXTA in order to traverse firewalls. However, our preliminary
tests showed that the delay and high frequency of failures caused by the use of
JXTA network were unacceptable. In face of this, we decided to borrow its idea
of HTTP polling and provide it as an alternative for the scenarios in which no
firewall configuration is possible at all, and TCP connections cannot be estab-
lished without using the HTTP protocol (see Section 2.3).

5.3 JacORB

JacORB [JacORB, 2005] [Brose, 1997] is a full-featured Java implementation
ORB. It provides firewall traversal through a service called Appligator, which
is a GIOP proxy supposed to be deployed inside the protected network and to
have a firewall port opened to it. It is similar to the OMG Approach described
in our work, but the JacORB online manual doesn’t make clear if the external
client has to be configured in order to become aware of Appligator’s existence,
or if the latter modifies the server object’s IOR in order not to require the client
configuration. If the client has to be configured, then the OMG Approach is a
better option regarding to interoperability. Moreover, JacORB’s Appligator does
not provide a solution for the situation where the firewall configuration is not
possible.

NAT support is offered through an application called fixior that patches
the Appligator’s IOR, inserting the firewall endpoint.

5.4 ICE

The ICE - Internet Communication Engine [Henning, 2004] is a communication
middleware similar in concept with CORBA, but not CORBA-compliant. It
provides a solution for firewall/NAT traversal through a service called Glacier
[Henning and Spruiell, 2005] that may also be used as the firewall of a network.
Similarly to our work, ICE doesn’t require any application code modification,
but only a configuration file. The main idea is to configure both the client and
the server to use this service, which will work as a broker between both, acting
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as a client to the server, and vice-versa. It also requires firewall configuration,
and the client has to be aware of the Glacier’s existence.

5.5 Xtradyne

Xtradyne is a company that has a commercial product called I-DBC (IIOP
Boundary Controller) [Technologies, 2005], that offers firewall/NAT traversal to
applications. In fact, it is a firewall, and its solution is to patch the IOR with
an endpoint opened for IIOP traffic so that client invocations are re-directed
to the firewall, which in turn contacts the server. Since there is few technical
information available, it is not clear how its protocol between the protected
application objects and the firewall works, in order to map the outside requests
to the intended recipients. An interesting feature of this firewall is its ability to
identify IORs sent as CORBA parameters and to modify them accordingly in
both directions.

This solution also requires firewall configuration, and does not require client
awareness of the firewall’s presence.

6 Conclusions and Future Work

This work has presented the design, implementation and evaluation of three
solutions for CORBA-based application firewall/NAT traversal. Through several
tests we have demonstrated their viability and also discussed the suitability of
each approach for specific degrees of firewall/NAT permeability.

In spite of being less efficient than the TCP Proxy Approach, and in some
scenarios also worse than the HTTP Approach, the solution based on the OMG
standard demonstrated to be a practicable approach, specially when the client
is not allowed to make an out-bound connection. An interesting future work on
this approach is to support secure transport protocols, as already defined by the
OMG.

The TCP Approach turned out to be the most efficient solution developed,
and also the easiest to implement since it required the smallest number of server
ORB modifications. Its premise - that out-bound connections are allowed - is
quite common, and as no firewall configuration is required, this approach repre-
sents a very good alternative. For the cases where high performance is a strong
requirement, this solution is definitely the best. However, its main drawback is
a possibly limited number of simultaneous connections at the proxy. A future
work on this approach could be to modify the protocol between the server ORB
and the proxy, allowing the latter to terminate unused data connections and
enabling the server ORB to recover from this action when desired.

The HTTP Approach gave the most interesting result. It was developed aim-
ing to work in the most restrictive scenario, i.e. where just out-bound connections
through HTTP are allowed. Its good performance, due to the extensive use of
the HTTP piggybacking feature, has proven this solution to be more efficient
than expected, and in some situations even better than the approach based in the
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OMG specification. An interesting future work in this direction would be to make
it compatible with the presence of Web proxy caches (e.g. Squid [Squid, 2005])
and enable clients in a protected network to use the proxy to send/receive GIOP
Request/Reply messages.

As a final remark, it should be clear that more tests need to be done with
different message sizes, method parameter types and network configurations, so
that we are able to pinpoint the specific implications of each approach on the
invocation delay, the network overhead, and the scalability. However, we believe
that in any case a customizable, multi-solution, rather a one-fits-all approach
should be pursued.
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