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Abstract. Our main goal in this paper is to study the scheduling of
parallel BSP tasks on clusters of computers. We focus our attention on
special characteristics of BSP tasks, which can use fewer processors than
the original required, but with a particular cost model. We discuss the
problem of scheduling a batch of BSP tasks on a fixed number of com-
puters. The objective is to minimize the completion time of the last task
(makespan). We show that the problem is difficult and present approx-
imation algorithms and heuristics. We finish the paper presenting the
results of extensive simulations under different workloads.

1 Introduction

With the growing popularity of Computational Grids [1] the model of environ-
ment in which parallel applications are executing is changing rapidly. In contrast
to dedicated homogeneous clusters, where the number of processors and their
characteristics are known a priori, Computational Grids are highly dynamic.
In these new environments, the number of machines available for computation
and their characteristics can change frequently. When we look at the case of
Opportunistic Grid Computing, which uses the shared idle time of the exist-
ing computing infrastructure [2], the changes in machine availability occur even
more rapidly. Thus, a model of parallel computation that does not allow varia-
tions in the number of processors available for computation would not fit well in
this environment.

Moldable tasks are able to maximize the use of available resources in a dy-
namic Grid in the presence of fluctuations in machine availability. In this paper
we extend the Bulk Synchronous Parallel (BSP) model [3] of computation to
allow for the definition of moldable tasks that can be executed in a varying
number of processors. As it will be described in detail later, a BSP application
is a sequence of supersteps, composed of the execution of independent processes,
separated by barrier synchronizations.
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Due to complexity of the grid environment, we have first focused our work
on the problem of scheduling tasks with a fixed set of available computers. How-
ever, we are currently investigating mechanisms to improve the scheduling by
supporting preemption of BSP tasks so as to schedule malleable tasks. We are
also studying mechanisms to propose a dynamic scheduling scheme. These im-
provements we allow us to develop sophisticated heuristics to schedule parallel
applications on actual computational grids.

The remainder of this paper is organized as follows. At the end of this section
we present our motivation and related work regarding the scheduling of moldable
tasks. In Section 2 we describe the BSP model and we also discuss the moldability
on BSP and the problem of scheduling moldable tasks. In Section 3 we propose
an approximation algorithm and some heuristics providing complexity proofs.
In Section 4 we show experimental results to evaluate the proposed algorithms.
In Section 5, we close the paper with some final remarks and ideas for future
works.

1.1 Motivation

Our group is developing a novel Grid middleware infrastructure called Inte-
Grade [2]. The main principles of InteGrade are: modern object-oriented design,
efficient communication based on CORBA, and native support for parallel com-
puting. In the current version‡, the BSP model [4] for parallel computation is
supported through an implementation of the BSPlib [5] library. In this paper,
we propose new scheduling algorithms for batches of BSP tasks, which are being
included into the InteGrade system.

Using only rigid BSP tasks, we could use classical results for scheduling tasks
with different execution times and number of processors. However, in our grid
environment we can easily reduce the number of processors of a BSP task, allo-
cating two or more processes to the same processor. As our environment is based
on CORBA, there are no differences between local and remote communications,
this is transparent to the programmer.

Given a BSP task that requires execution time t on n processors, we can
allocate it without effort, depending on the memory constraints, using fewer
processors. The behavior of moldability can be approximated by a discrete func-
tion. If fewer than n processors are available, say n′, the execution time can be
estimated by td n

n′
e.

1.2 Related work

Most existing works for scheduling moldable tasks are based on a two-phase ap-
proach introduced by Turek, Wolf, and Yu [6]. The basic idea is to select, in a
first step, an allocation (the number of processors allocated to each task) and
then solve the resulting non-moldable scheduling problem, which is a classical

‡ Available for download at http://gsd.ime.usp.br/integrade



multiprocessor scheduling problem. As far as the makespan criterion is con-
cerned, this problem is identical to a 2-dimensional strip-packing problem [7, 8].
It is clear that applying an approximation of guarantee λ for the non-moldable
problem on the allocation of an optimal solution provides the same guarantee λ
for the moldable problem. Ludwig [9] improved the complexity of the allocation
selection of the Turek’s algorithm in the special case of monotonic tasks. Based
on this result and on the 2-dimensional strip-packing algorithm of guarantee 2
proposed by Steinberg [10], he presented a 2-approximation algorithm for the
moldable scheduling problem. These results however are designed for the general
moldable tasks problem, where each task has a different execution time for each
number of processors.

As we will see in the formal definition of BSP moldable tasks, the size of our
instances is much smaller. This happens because we know the penalty incurred
when the number of processors allocated to a task is different from the requested
number of processors.

Mounié, Rapine and Trystram improved this 2-approximation result by con-
centrating more on the first phase (the allocation problem). More precisely, they
proposed to select an allocation such that it is no longer needed to solve a general
strip-packing instance, but a simpler one where better performance guarantees
can be ensured. They published a

√
3-approximation algorithm [11] and later

submitted a 3/2-approximation algorithm [12, 13]. However, these results are for
a special case of moldable tasks where the execution time decreases when the
number of processors allocated to the task increases and the workload (defined
as time×processors) increases accordingly. We will see that this hypothesis is not
verified here. To the best of our knowledge there is no other work on scheduling
moldable BSP tasks.

2 The BSP Computing Model

The Bulk Synchronous Parallel model (BSP) [3] was introduced by Leslie Valiant
as a bridging model, linking architecture and software. BSP offers both a pow-
erful abstraction for computer architects and compiler writers and a concise
model of parallel program execution, enabling accurate performance prediction
for proactive application design.

A BSP abstract computer consists of a collection of virtual processors, each
with local memory, connected by an interconnection network whose only proper-
ties of interest are the time to do a barrier synchronization and the rate at which
continuous, randomly addressed data can be delivered. A BSP computation con-
sists of a sequence of parallel supersteps, where each superstep is composed of
computation and communication, followed by a barrier of synchronization.

The BSP model is compatible with conventional SPMD/MPMD (single/mul-
tiple program, multiple data), and is at least as flexible as MPI [14], having
both remote memory (DRMA) and message-passing (BSMP) capabilities. The
timing of communication operations, however, is different since the effects of BSP
communication operations do not become effective until the next superstep.



The postponing of communications to the end of a superstep is the key idea
for implementations of the BSP model. It removes the need to support non-
barrier synchronizations among processes and guarantees that processes within
a superstep are mutually independent. This makes BSP easier to implement on
different architectures and makes BSP programs easier to write, to understand,
and to analyze mathematically. For example, since the timing of BSP communi-
cations makes circular data dependencies among BSP processes impossible, there
is no risk of deadlocks or livelocks in a BSP program. Also, the separation of the
computation, communication, and synchronization phases allows one to com-
pute time bounds and predict performance using relatively simple mathematical
equations [15].

An advantage of BSP over other approaches to architecture-independent pro-
gramming, such as the PVM [16] and MPI [17] message passing libraries, lies in
the simplicity of its interface, as there are only 20 basic functions. A piece of
software written for an ordinary sequential machine can be transformed into a
parallel application with the addition of only a few instructions.

Another advantage is performance predictability. The performance of a BSP
computer is analyzed by assuming that, in one time unit, an operation can be
computed by a processor on the data available in local memory and based on
the following parameters:

1. P – the number of processors;
2. ws

i – the time to compute the superstep s on processor i;
3. hs

i – the number of bytes sent or received by processor i on superstep s;
4. g – the ratio of communication throughput to processor throughput;
5. l – the time required to barrier synchronize all processors.

To avoid congestion, for every processor on each superstep, hs
i must be no

greater than d l
g
e.

Moreover, there are plenty of algorithms developed for CGM (Coarse Grained
Multicomputer Model) [18], which has the same principles of BSP, and can be
easily ported to BSP.

Several implementations of the BSP model have been developed since the
initial proposal by Valiant. They provide to the users full control over commu-
nication and synchronization in their applications. The mapping of virtual BSP
processors to physical processors is hidden from the user, no matter what the
real machine architecture is. BSP implementations developed in the past include:
Oxford’s BSPlib [5] (1993), JBSP [19] (1999), a Java version, PUB [20] (1999)
and BSP-G [21] (2003).

2.1 Moldability on BSP

Given a BSP task that requires n processors, it is composed of n different pro-
cesses which communicate on the global synchronization points. When designing
BSP algorithms, for example using CGM techniques, one of the goals can be to
distribute the load across processes more or less as evenly as possible.



To model moldability we use the following fact. When embedding BSP pro-
cesses into homogeneous processors, if a single processor receives two tasks, in-
tuitively, it will have twice as much work as the other processors. To reach each
global synchronization, this processor will have to execute two processes and to
send and receive the data corresponding to these processes. However, to continue
processing, all the other processors have to wait. Hence, the program completion
time on n − 1 processors will be approximately two times the original expected
time on n processors.

The same idea can be used when scheduling BSP tasks on fewer processors
than the required. Each BSP process has to be scheduled to a processor and the
expected completion time will be the original time multiplied by the maximum
number of processes allocated to a processor. It is clear to observe that when
processes are allocated to homogeneous processors, in order to minimize execu-
tion time the difference in the number of processes allocated to the most and to
the least loaded processor should be at most one. This difference must be zero
when the used number of processors exactly divides the number of processes.

For the scheduling algorithms used in this paper, given a BSP task composed
of n processes and with processing time t, if n′ < n processors are used, the
processing time will be td n

n′
e. So, if only n − 1 processors are available, the

execution time of these tasks will be the same whether using n − 1, or dn
2
e

processors. Obviously, in the last case, we will have a smaller work area (number
of processors times execution time).

2.2 Notations and properties

We are considering the problem of scheduling independent moldable BSP tasks
on a cluster of m processors.

In the rest of the paper the number of processors requested by the BSP task
i will be denoted reqi. The execution time of task i on a number p of processors
will be ti(p). As we are dealing with BSP tasks, we can reduce the number of
processors allocated to a task at the cost of a longer execution time. The relation
between processor allocation and time is the following:

∀q∀p ∈
[

reqi

q + 1
,
reqi

q

[

, ti(p) = (q + 1)ti(reqi)

where p and q are integers. In this work we do not consider a minimal number
of processors for each task.

Table 1 shows an example with reqi = 7 and ti(reqi) = 1, and the resulting
workload which is defined as the product of processors allocated and execution
times. We can see in this example that the workload is not monotonous in our
case as in some other works on moldable tasks [11], but it is always larger than
or equal to the workload with the required number of processors. Remark that
for any task, on one processor the workload is equal to the minimum workload.



Table 1. A BSP task and its possible execution times and associated workloads

#procs. 7 6 5 4 3 2 1

time 1 2 2 2 3 4 7

work 7 12 10 8 9 8 7

2.3 NP-hardness

The problem of scheduling independent moldable tasks is generally believed to
be NP-hard, but this has never been formally proven. It contains as a special
case the problem of scheduling independent sequential tasks (requiring only one
processor), which is NP-hard [22]. However, the size of the moldable tasks prob-
lem is O(n ∗m) since each task has to be defined with all its possible allocation,
whereas the size of the sequential problem is O(n + ln(m)) since we only need
to know the number of available processors and the length of each task.

In the BSP moldable task problem, the problem size is hopefully much
smaller, as we only need to know for each task the requested number of proces-
sors and the execution time for this required number of processors. The moldable
behavior of the tasks is then deduced from the definition of BSP moldable tasks.
Therefore the overall size of an instance is in O(n∗ ln(m)) which is polynomial in
both n and ln(m). The reduction from the multi-processor scheduling problem
is then polynomial, which proves the NP-hardness of our problem.

3 Algorithms

To solve efficiently the problem of scheduling parallel BSP tasks, we have to
design polynomial algorithm which provides on average a result close to the
optimal. The first step is therefore to determine a good lower bound of the
optimal value to be able to measure the performance of our algorithms. Two
classic lower bounds for scheduling parallel tasks are the total workload divided
by the number of available processors and the length of the longest task. With
our previous notations, these two lower bounds are respectively

∑

i ti(reqi)/m
and maxi ti(reqi).

3.1 Guaranteed algorithm

The best way to assess the quality of an algorithm is to mathematically prove
that for any instance, the ratio between the makespan ω of the schedule produced
by the algorithm and the optimal makespan ω∗ is bounded by a constant factor
ρ.

As we said in the introduction, the problem of scheduling independent mold-
able tasks has already been studied and some guaranteed algorithms have al-
ready been proposed for this problem. The best algorithm to date is a 3/2-
approximation algorithm proposed by Mounié et al. [13], however this algorithm



needs an additional monotonicity property for the tasks. This property states
that the workload is non decreasing when the number of processors allocated
to a task increases which is clearly not the case with our moldable BSP tasks.
An older algorithm which does not require this monotonic property has been de-
signed by Ludwig [9]. This algorithm has a performance ratio of 2 as does the one
we are proposing below, however it is much more complicated to use since it in-
volves a strip packing phase. This is why we decided to design a 2-approximation
algorithm based on our knowledge of the BSP tasks.

The algorithm is based on the dual approximation scheme as defined by [23].
The dual approximation scheme is based on successive guess ω̂ of the optimal
makespan, and for each guess runs a simple scheduler which either outputs a
schedule of makespan lower or equal to 2ω̂, or outputs that ω̂ is lower than
the optimal. With this scheduler and a binary search, the value of ω̂ quickly
converges toward a lower bound of the optimal makespan for which we can
produce a schedule in no more than 2ω̂ units of time.

The scheduler works as follows. Based on the guess ω̂, we determine for each
task i the minimal allocation ai (if it exists) such that ti(ai) ≤ 2ω̂. If there is a
task such that this ai does not exists (i.e. ti(reqi) > 2ω̂) the optimal makespan
is larger than this particular ti(reqi) and therefore larger than ω̂. Given these ai,
we schedule all the tasks that require more than one processor (“large” tasks)
on exactly ai processors, and we schedule the remaining tasks (“small” tasks,
requiring exactly one processor) on the q remaining processors with a largest
processing time first order.

There are three cases in which this algorithm fails to produce a schedule in
no more than 2ω̂ units of time:

1. There are too many processors required by “large” tasks (
∑

ai>1
ai > m).

2. There are no processors left for “small” tasks (
∑

ai>1
ai = m and

∑

ai=1
ai > 0).

3. One of the sequential tasks is scheduled to complete after the 2ω̂ deadline.
As the first fit has a 2-approximation ratio, it means that there is too much
workload for “small” tasks
(
∑

ai=1
ti(1) > (m − ∑

ai>1
ai)ω̂).

For each case we will prove that if the schedule fails, the guess ω̂ is lower
than the optimal makespan. Before going into details for each case, we need to
prove the following lemma:

Lemma 1. For all task i such that ai > 1, we have ti(reqi)reqi ≥ aiω̂.

The idea behind this lemma is that the ai processors allocated to task i are used
efficiently for a sufficient period of time.

Proof. For ai equal to 2, we know that ti(ai − 1) > 2ω̂ as ai is the minimal
number of processors to have an execution time no more than 2ω̂. As we noted
in Section 2.2 the workload on one processor is equal to the minimal workload
reqiti(reqi), therefore we can write when ai = 2 and ti(ai − 1) = reqiti(reqi)
that ti(reqi)reqi ≥ aiω̂.



For the other extremal case, when ai = reqi, since reqi ≥ 2 we have reqi−1 ≥
reqi/2 and then ti(reqi − 1) = 2ti(reqi) by definition of the execution times
(see Section 2.2). By definition of ai, we then have 2ti(reqi) > 2ω̂ and then
reqiti(reqi) > aiω̂.

For the general case where 2 < ai < reqi, by definition of ti(ai), there exists
an integer q such that ti(ai) = (q +1)ti(reqi). As ai is minimum, ti(ai −1) > 2ω̂
and there exists also an integer s ≥ 1 such that ti(ai − 1) = (q + s + 1)ti(reqi).
Therefore we have the following lower bound for ti(reqi):

ti(reqi) >
2ω̂

q + s + 1
(1)

By definition of the execution times, as ti(ai − 1) = (q + s + 1)ti(reqi), we
have ai − 1 < reqi/(q + s) which can be rewritten as:

reqi ≥ (q + s)(ai − 1) + 1 (2)

By combining inequalities 1 and 2, we have a lower bound for the left term
of the lemma:

ti(reqi)reqi >
2((q + s)(ai − 1) + 1)

q + s + 1
ω̂ (3)

In order to conclude, we have to compare the values of ai and 2((q + s)(ai −
1) + 1)/(q + s + 1) which is done by comparing their difference:

2((q + s)(ai − 1) + 1) − ai(q + s + 1) = 2qai + 2sai − 2q − 2s + 2 − qai − sai − ai

= q(ai − 2) + s(ai − 2) − (ai − 2)

= (q + s − 1)(ai − 2)

This value being positive or equal to zero, aiω̂ is a lower bound of the right
term of inequality 3, which concludes the proof of the lemma. ¤

Theorem 1. When the schedule fails, the guess ω̂ is too small.

Proof.

Case 1
∑

ai>1

ai > m

In this case the minimal total workload
∑

i reqiti(reqi) can be bounded in
the following way:



∑

i

reqiti(reqi) ≥
∑

ai>1

reqiti(reqi)

≥
∑

ai>1

aiω̂

∑

ai>1

aiω̂ > mω̂

Therefore ω̂ is lower than the optimal makespan.

Case 2
∑

ai>1

ai = m and
∑

ai=1

ai > 0

As previously, we can bound the minimal total workload but this time the
strong inequality is the first one:

∑

i

reqiti(reqi) >
∑

ai>1

reqiti(reqi)

∑

ai>1

reqiti(reqi) ≥
∑

ai>1

aiω̂

∑

ai>1

aiω̂ = mω̂

Which again proves that the guess was too small.

Case 3
∑

ai=1

ti(1) >

(

m −
∑

ai>1

ai

)

ω̂

Finally in this case, the bounding is a little more subtle:

∑

i

reqiti(reqi) =
∑

ai>1

reqiti(reqi) +
∑

ai=1

reqiti(reqi)

≥
∑

ai>1

aiω̂ +
∑

ai=1

ti(1)

>
∑

ai>1

aiω̂ +

(

m −
∑

ai>1

ai

)

ω̂ = mω̂

Therefore in all the cases where the schedule fails, the guess was lower than
the optimal makespan. ¤



Corollary 1. The proposed algorithm provides a 2-approximation for BSP mold-

able tasks.

The sum of the sequential execution times of all the tasks is an upper bound
of the optimal makespan, which is polynomial in the size of the instance. Starting
from this guess, we can use the algorithm in a binary search of the lowest possible
value ω̂ for which we can build a schedule in at most 2ω̂. If ε/2 is the size of the
last step of the binary search, ω̂ − ε/2 is a lower bound of the optimal ω∗, and
2ω̂ < 2ω∗ + ε which means that the schedule produced in the last step is at most
2 + ε times longer than the optimal.

3.2 Tested heuristics

We have implemented four algorithms to schedule a set of BSP tasks, each task
comprising a set of processes, on homogeneous processors.

The first algorithm A1 is the well-known Largest Task First list scheduling
(where largest refers to number of processors×execution time i.e. the workload)
with a pre-processing stage. This pre-processing consists of modifying all tasks
regarding the maximum number of processors maxnprocs each one will receive.
The idea here is to reduce the size of the largest jobs in order to have less
heterogeneity in the set of tasks.

When the original number of processors reqnprocs of a task is modified, the
amount of time reqtime needed to execute it is also modified. The pseudo-code
below is executed on each task before scheduling.

Algorithm 1 Pseudo-code for pre-processing each task to be scheduled in algo-
rithm A1

if task.reqnprocs > maxnprocs then

task.reqtime = d(task.reqnprocs/maxnprocs)e ∗ task.reqtime
task.reqnprocs = maxnprocs

end if

The main problem of this algorithm is that we must verify all possible
maxnprocs values, from one to the number of processors available in the comput-
ing system so as to discover the most appropriated value. Doing this we noticed
that the true LTF scheduling (i.e. when maxnprocs = m tasks are not reduced)
was usually far from the optimal makespan.

Once the tasks are reduced they are sorted according to their sizes in O(n ∗
ln(n)) steps, and then scheduled in n steps. The overall complexity of this algo-
rithm is therefore O(m ∗ n ∗ ln(n)).

The second algorithm A2 is based on the idea of reducing the idle time in
the schedule by optimizing the placement of the different tasks (see Fig. 1). The
algorithm comprises two steps:



1. Look for the best task such that, when scheduled, the idle time is reduced
or remains the same. Best task means the smallest amount of idle time, the
better the task. Note that in this step, the number of processors and time
to execute the task can be modified. If a task is found, schedule it.

2. If Step 1 has failed, schedule the first largest task that was not scheduled
yet.
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Fig. 1. Examples of schedulings to reduce the idle time

As we have seen in the presentation of the BSP moldable model, for a given
task there can be several allocations having the same execution time. For ex-
ample, in Table 1 the allocations to 4, 5 and 6 processors all have an execution
time of 2. We therefore will only consider here interesting allocations, for which
there is no smaller allocation for the same execution time.

With this restriction the number of possible allocations goes down from
reqnprocs to approximately 2

√
reqnprocs. This greatly reduces the complexity

of the algorithm, however the overall complexity is still greater than O(n∗ln(m))
which is the size of the instance.

The third algorithm A3 is a derivation of the second one previously pre-
sented. It basically consists of scheduling tasks that generate the smallest idle
time, even if the new idle time is greater than the original one. Thus, the first
step presented in the previous algorithm is not limited to smaller idle times, and
the second step is never executed.

The fourth algorithm A4 is the guaranteed algorithm presented in the
previous section. It is the fastest algorithm, however we will see that its average
behavior is far from the best solutions found.

4 Experimental Results

In order to evaluate the algorithms, we developed a simulator that implements
the presented algorithms and used both real and generated workloads. The real
workloads§ are from two IBM SP2 systems located at Cornell Theory Center

§ Available at: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
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Fig. 2. Evaluation of the scheduling algorithms on 64 processors
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Fig. 3. Evaluation of the scheduling algorithms on 128 processors

(CTC) and San Diego Supercomputer Center (SDSC) [24], and the generated
workloads were generated by a Gaussian distribution. Unlike the real workloads,
the number of processors requested by the tasks in the generated instances are
in most cases not powers of two [25], which are “bad” tasks for our algorithms
as for example 32 is divisible by 16, 8, 4 and 2, and 33 is divisible only by 11 and
3. Note that although the real workloads are not from execution of parallel BSP
tasks, the selected machines work with regular parallel applications, and to the
best of our knowledge there should be no difference between workloads of MPI
and BSP applications.

To perform the experiments we chose three different platforms: with respec-
tively 64, 128 and 256 processors. We selected the SDSC workloads to evaluate
the algorithms on 64 and 128 processors and the CTC workloads were used in
the experiments with 256 processors. The generated workloads were used for all
platforms.
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Fig. 4. Evaluation of the scheduling algorithms on 256 processors

For each experiment we performed 40 executions with different workloads,
and then we took out the five best and the five worst results to reduce the
deviation. The tasks in each real workload experiment were selected randomly
from all the tasks in the corresponding logs. The graphics illustrated in Fig. 2, 3
and 4 depict the results obtained in our experiments. In these figures the x-axis
is the ratio between the number of tasks scheduled and the number of processors
of the computer, while the y-axis is the ratio between the schedule length and
a lower bound for the considered instance. This lower bound is actually the
maximum of the two classical lower bounds: the execution time of the longest
task (when allocated to its required number of processors) and the minimal
average workload per processor. The schedule produced by the fourth algorithm
is always lower or equal to two times the average workload.

Based on the results we can observe that algorithm A1 generally produces
the best schedules. The algorithms A2 and A3 have similar behaviors and are
very close to A1. Finally, as expected the fourth algorithm has a ratio which is
close to 2 in the unfavorable cases. Remark that for the generated workload, the
worst results of A4 are for tasks/processors ratios close to 1. This result confirms
the intuition [12] that for moldable task problems the difficult part is when there
are approximately as many tasks as processors.

To illustrate the difference between the fourth algorithm and the three other
algorithms, we included Fig. 5, 6, 7 and 8 that depict schedules for 25 tasks on
16 processors made with the four algorithms. On Fig. 8 it appears clearly that
reducing all the tasks to the allocation which is the smallest below the 2ω̂ limit
tends to produce schedules close to twice the optimal, since most of the tasks
are sequential.

As mentioned previously, the main problem of the algorithm A1 is that we
need to schedule the tasks several times in order to discover the threshold, which
is the maximum amount of processors the tasks should use. However, when there
is a small number of processors in the computing environment, this algorithm is
still usable in reasonable time. For larger numbers of processors, the algorithms



Fig. 5. A schedule of 25 tasks on 16 processors with algorithm A1

Fig. 6. A schedule of 25 tasks on 16 processors with algorithm A2

Fig. 7. A schedule of 25 tasks on 16 processors with algorithm A3

Fig. 8. A schedule of 25 tasks on 16 processors with algorithm A4
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Fig. 9. Execution times for up to 100 tasks on 64 processors

A2 and A3 should be used, since even if they do not produce the best results,
the difference is within reasonable bounds. As we could have guessed, the longer
it takes to schedule the tasks, the better the results.

This is illustrated in Fig. 9, where the execution times of the four algorithms
are compared on 64 processors for 10 to 100 tasks. As previously described, the
fourth algorithm is much faster than the three others, and the slowest algorithm
is the first one. The execution times on the time scale are in milliseconds. For
larger instances (1024 tasks on 512 processors) we witnessed execution times of
several minutes on a recent computer (Pentium III 800 MHz, 512MB RAM). We
executed all the other experiments on the same computer.



Another important observation is that the results using real and generated
workloads are similar for the algorithms A1, A2 and A3. Our main goal to make
experiments with generated workloads is that the real workloads are mostly
made of regulars tasks, as well as tasks requiring processors in powers of two.
These characteristics are usually found only in dedicated computer systems, such
as supercomputers and clusters. Thus, we have used workloads with other char-
acteristics in order to verify the quality of the proposed algorithms on different
environments.

5 Conclusion and Future Work

In this paper we studied the scheduling of moldable BSP parallel tasks. First we
showed that the problem is NP -hard, and then we provided a 2-approximation
algorithm and some good heuristics. On the algorithms, the number of processors
given to a task with n processes can range from 1 to n. However, due mainly
to memory limitations this may not be feasible in practice. Moreover, with few
processors the task can be delayed for long time. Thus, as future work we intend
to limit the minimal number of processors for a task in order to limit the maximal
number of processes in each processor.

This work has as its final goal an implementation to be used to schedule
parallel applications on our grid environment, InteGrade. Also as future works
we intend to explore the possibilities provided by our grid environment, pro-
cessors heterogeneity, parallel tasks preemption, and machine unavailability. For
the last two cases we will study in detail the effects of interrupting a parallel
task and possibly continue to execute it on a different number of processors,
which is possible with the BSP synchronizations and our already implemented
checkpointing library [26].
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