
Running Highly-Coupled Parallel Applications in a
Computational Grid

Andrei Goldchleger∗, Carlos Alexandre Queiroz , Fabio Kon , Alfredo Goldman

Department of Computer Science – University of São Paulo
{andgold,carlosq,kon,gold}@ime.usp.br

http://gsd.ime.usp.br/integrade

Abstract. InteGrade is an object-oriented grid middleware infrastructure whose
goal is to leverage existing computational resources in organizations. Rather
than relying on dedicated hardware such as reserved clusters, InteGrade fo-
cuses on using user desktops, machines in instructional laboratories, shared
workstations, as well as dedicated clusters.
In this paper, we describe the recently added support for the execution of parallel
applications on top of InteGrade. Using these new capabilities, it is possible to
distribute a single application over a collection of InteGrade nodes distributed
across local- and wide-area networks. The paper describes the implementation
of the middleware supporting BSP parallel applications.

1. Introduction

InteGrade1 [Goldchleger et al., 2004] is a Grid Computing system aimed at commodity
workstations such as household PCs, corporate employee workstations, and PCs in shared
laboratories. InteGrade uses the idle computing power of these machines to perform
useful computation. Our goal is to allow organizations to use their existing computing
infrastructure to perform useful computation, without requiring the purchase of additional
hardware. Moreover, users who share the idle portion of their resources should have their
quality of service preserved by the InteGrade middleware.

Before the work presented in this paper, InteGrade allowed for the distribution
and execution of applications in Grid machines but it lacked explicit support for parallel
applications. If a user wanted to execute a parallel application in which each part of
the application ran on a different Grid machine, the only possibility was to program it
manually, since no middleware support was available for distributing a single application
across many nodes.

To solve this limitation, we implemented support for distributing and executing
two different kinds of parallel applications. First, we extended InteGrade’s interface to
support parametric applications in which there is no communication among application
nodes. Second, we implemented a modern parallel computing model (Bulk Synchronous
Parallel (BSP) [Valiant, 1990]) to support applications whose nodes do communicate
with each other. The BSP reference implementation is University of Oxford’s BSPlib

∗Andrei Goldchleger is partially supported by a graduate fellowship from CAPES, Brazil
1This work is supported by a grant from CNPq, Brazil, process #55.2028/02-9.



[Hill et al., 1998]. The BSPlib core library is simple and composed of only 20 functions.
When compared to PVM [Sunderam, 1990] and MPI [MPI Forum, 1993], two popular
parallel computing libraries, BSP offers a much more elegant computing model and sim-
pler programming library.

In this paper, we discuss the implementation of the BSP model on top of the
InteGrade Grid middleware, using its distributed scheduling and allocation services.

2. BSP over InteGrade

In order to ease application migration to the grid environment, one of the objectives of
the InteGrade BSP implementation is to allow existing applications written for the Ox-
ford BSPlib to be executed over InteGrade with little or even no modifications. Thus,
we strictly adhere to the API defined by Oxford’s implementation targeted for the C lan-
guage2. The task of converting an existing BSPlib application to execute over InteGrade
consists only in including a different header file, recompiling and re-linking the applica-
tion with the appropriate InteGrade libraries.

Another important design decision was not to overload the core InteGrade in-
terfaces with methods related to BSP. For example, the scheduling system remains un-
changed even with the addition of parallel applications. It is the responsibility of the
BSP library to arrange for application startup, and it does so by building over the exist-
ing scheduling system for regular applications. Although we consider this independency
important, we recognize that this approach has its drawbacks. The impossibility of the
scheduler to make gang scheduling decisions may lead to sub-optimal scheduling perfor-
mance. However, we are trying to find a compromise solution between the two extremes.

Finally, our BSP implementation uses CORBA for inter-task communication.
CORBA gives us the advantages of an easier and cleaner communication environment,
shortening development and maintenance time. One could argue that CORBA’s IIOP
is far from being the ideal communication protocol for a parallel programming library.
However, we remind that InteGrade benefits from otherwise wasted computing resources,
and applications are executed on a highly dynamic environment, so raw performance
is not one of our major objectives at the moment. Additionally, some experiments
[Román et al., 2001] with compact ORBs show a slowdown in communications of only
15% when comparing CORBA to raw sockets. This means that using CORBA does not
necessarily imply in poor communication performance.

2.1. The Implementation

The Oxford BSPlib has two means of inter-task communication. Direct Remote Mem-
ory Access (DRMA), which allows a task to read from and write to the remote address
space of another task, and Bulk Synchronous Message Passing (BSMP), that implements
message passing communication between tasks. We have currently implemented all of
DRMA, which already allows simple BSPlib applications to be executed. We have also
implemented other library methods such as the initialization routine, which is mandatory

2There is also a Fortran implementation of the BSPlib. However, InteGrade currently does not support
Fortran.



for all BSP programs, the barrier synchronization, and some simple enquiry methods. The
complete list of implemented methods follows.

• bsp begin: initializes a BSP application.
• bsp pushregister: declares that a given memory address can be accessed by

other tasks.
• bsp popregister: makes a given memory area unavailable for remote access.
• bsp put: writes on the memory of another task.
• bsp get: fetches data from the memory of another task.
• bsp sync: the synchronization barrier.
• bsp pid: returns the BSP process ID of the calling task (local method).
• bsp nprocs: returns the number of tasks of the parallel application.

In our implementation, each of the component tasks of a parallel application has
an associated BspProxy. The BspProxy is a CORBA servant responsible for receiving
BSP related communication for a given task. The proxy contains methods corresponding
to methods defined in the BSP API, such as bsp put, and also contains methods that
are internal to our implementation. The creation of BspProxies is entirely handled by
the library and is totally transparent to library users. The library also creates a StubPool,
which is responsible for the instantiation of client stubs to access the proxies of other BSP
tasks. As each of the tasks of a given application potentially communicate with all the
other tasks, the pool organization of these stubs allows us to save memory by sharing only
one copy of the O2 library3.

BSP parallel applications need a means to initialize the execution, spawn addi-
tional tasks, and manage synchronization barriers. In our implementation, these function-
alities are built directly in the library, without requiring any additional services dedicated
to parallel applications. The first process that compose a BSP application, from now on
called Process Zero, is responsible for spawning the remaining tasks by engaging in ne-
gotiation with the Global Resource Manager (GRM) 4. It is also responsible for allocating
a PID to each of the remaining BSP tasks, and coordinate synchronization barriers.

Parallel applications are executed in the following way: users register applications
in an application repository using the Application Submittion and Control Tool (ASCT).
Parallel applications are registered in the same way as sequential ones. When a user
wants to execute a registered parallel application, he uses the ASCT to make a request
to the GRM. This request is identical to what is done when requesting the execution of
a sequential application. He also specifies a configuration filename specific for parallel
application execution. It is important to note that this filename is not used by the GRM in
any way, it is simply forwarded to the Local Resource Managers (LRMs) which will host
each of the tasks that compose the parallel application. When a request reaches a LRM,
it downloads the configuration file from the ASCT.

The bsp beginmethod determines the beginning of the parallel section of a BSP
application. As we stated before, Process Zero is responsible for launching all remaining
tasks, so it is essential that the library knows wether a given task is Process Zero or not.

3O2 (http://www.tecgraf.puc-rio.br/luaorb/o2), our CORBA ORB, is written in Lua
and it is loaded by the Lua runtime in the beginning of the application.

4The InteGrade architecture and modules are described in detail in [Goldchleger et al., 2004]



This information is obtained from the configuration file, which also holds the number
of tasks that must be spawned. During bsp begin, the configuration file is read. If
the process is the Zero, it is responsible for spawning the remaining application tasks.
Otherwise the process is just a plain task: it instantiates its servant, sends a registration
message to Process Zero, which is reachable by the IOR contained in the configuration
file, and waits until it receives a PID and, subsequently, the IOR of all other processes.

At the end of bsp begin, each of the processes has a BSP PID and the IORs of
all other processes, which are used to instantiate stubs for remote communication. The
communication between tasks are made through BspProxies and StubPools, as CORBA
remote method invocations.

Computation in the BSP model is composed of supersteps, where each superstep
is composed of computation and communication, followed by synchronization barrier.
Operations such as bsp put and bsp pushregister only become effective at the
end of the superstep. bsp synch is the method responsible for establishing synchro-
nization. In our implementation, it works as follows: when each task calls bsp synch
(including Process Zero), it sends a synch message to Process Zero and then stops execut-
ing. When Process Zero receives synch messages from all other processes, it broadcasts
a synch done message to the other processes, which then can process all pending op-
erations, such as bsp put, bsp pushregister, etc. . .

3. Conclusions

In this paper, we described the implementation of the support for parallel applications
in the InteGrade middleware infrastructure for Grid Computing. Thanks to the object-
oriented architecture of InteGrade and its use of an elegant and mature distributed object
model (CORBA), the implementation of the extra functionality was relatively easy to add.

References

Goldchleger, A., Kon, F., Goldman, A., Finger, M., and Bezerra, G. C. (2004). Inte-
Grade: Object-Oriented Grid Middleware Leveraging Idle Computing Power of Desk-
top Machines. Accepted for publication in Concurrency and Computation: Practice &
Experience, Volume 16.

Hill, J. M. D., McColl, B., Stefanescu, D. C., Goudreau, M. W., Lang, K., Rao, S. B.,
Suel, T., Tsantilas, T., and Bisseling, R. H. (1998). BSPlib: The BSP programming
library. Parallel Computing, 24(14):1947–1980.

MPI Forum (1993). MPI: A Message Passing Interface. In Proceedings of Supercomput-
ing ’93.

Román, M., Kon, F., and Campbell, R. (2001). Reflective Middleware: From Your Desk
to Your Hand. IEEE Distributed Systems Online, 2(5).

Sunderam, V. S. (1990). PVM: a framework for parallel distributed computing. Concur-
rency, Practice and Experience, 2(4):315–340.

Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the
ACM, 33:103–111.


