
Mobile Agents: A Key for Effective Pervasive Computing∗

Roberto Speicys Cardoso Fabio Kon

Department of Computer Science

University of São Paulo, Brazil

{speicys,kon}@ime.usp.br
http://gsd.ime.usp.br

Abstract

The recent evolution of small-sized electronic devices and
their growing computational power turned the concept of
pervasive computing into a reality not very distant in the
future. Researchers are currently developing systems to
provide the basic software infrastructure needed for next
generation pervasive computing environments. In these
systems, however, the possibilities offered by the use of
mobile agents are being overlooked. In this paper, we
argue that mobile agents, due to its inherent flexibility,
can bring a number of benefits to pervasive computing
systems. Furthermore, we propose a novel architecture
that uses mobile agents to perform three common tasks of
pervasive computing more efficiently: system adaptation,
component updates and QoS negotiation.

1 Introduction

In the last few years, researchers have been working on
new operating system and middleware infrastructures
for next generation pervasive computing environments
[RC00, GDL+01, GWS01, IBM01]. The traditional ap-
proach for distributed computing has to be extended for
the pervasive computing domain due to its particular fea-
tures, thus creating a new paradigm.

The goal of the Gaia project at the University of Illi-
nois [HRC02] is to create a computer system similar to a
conventional operating system, but for the pervasive com-
puting world. The Gaia system is responsible for man-
aging a large collection of networked resources and for
implementing a variety of services to facilitate applica-
tion development in a pervasive computing environment.
In this paper we focus on a few key issues that such a
system must address to be successful.

Networking in pervasive systems is a fragile resource.
Network connections of mobile devices are usually unsta-
ble and have high and unpredictable error rates. Besides,
networking is one of the most energy consuming resources
of a mobile computer [SH00] and energy is a scarce re-
source in mobile devices. As mobile computers are an

∗This research is supported by grants from CNPq-Brazil (Kit
Enxoval proc. 68.0118/01-2) and FAPESP-Brazil (proc. 01/03861-
0).

essential part of pervasive computing, the limitations of
mobile networking must be considered carefully.

Pervasive computing environments are always chang-
ing. New devices and users become part of the system
and leave it frequently. High peaks of utilization are com-
mon as well as long idle periods with almost no system
activity. The supporting system must have mechanisms
to adapt itself to these constant changes; infrastructure
services must be able to reconfigure themselves to ac-
commodate changes in the execution environment. To
be effective, this adaptation must be as spontaneous and
automatic as possible, hiding from the user and admin-
istrators the tedious tasks of configuration and system
management.

Thousands (or millions) of different devices will use
the services provided by the computational infrastruc-
ture, which will run hundreds (or thousands) of differ-
ent software components. It is obviously not feasible to
manage this number of devices and components manu-
ally. Therefore, there must be a simple way to perform
administrative tasks such as installing new software and
updating existing components with little or no human
intervention.

Finally, pervasive computing aims at using computa-
tional devices to augment the user’s perception of the
world and to help the user to perform traditional tasks
more easily. To provide an effective pervasive computing
experience, the integration between computers and the
real world must occur as seamlessly as possible. Thus,
services, applications, and user interfaces have strict qual-
ity of service requirements that must be met or otherwise
the system will feel unresponsive to its users.

Mobile agents [JvRS95, LO98] can help to solve the
above issues in a number of different ways. With asyn-
chronous execution, they avoid long periods of connected
activity, reducing network load [LA99], and thus saving
energy. Mobile agents encapsulate data and code in a sin-
gle mobile entity. Thus, an agent can be injected into the
network to perform a task on a collection of distributed
hosts, or perform tasks on the pervasive environment on
behalf of an application, and then return the results of the
requested actions on each host to the originating node.
On each of these cases, the use of mobile agents can lead
to great advantages in terms of performance, flexibility,

1



and scalability.
In this paper, we describe a solution based on mobile

agents for (1) system adaptation based on service mi-
gration, (2) automatic updates of software components,
and (3) QoS negotiation. A prototype implementation of
these ideas is underway.

The paper is structured as follows: Section 2 gives a
brief overview of our previous work on pervasive comput-
ing. Section 3 describes the architecture of the proposed
solution and Section 4 reports the current status of the
project. Finally, Section 5 cites relevant related work,
and Section 6 presents our conclusions on using mobile
agents in pervasive computing.

2 Previous work

The work presented here is an evolution of the ideas pre-
sented in [KGA+00], where we demonstrate the use of
mobile agents for the dynamic configuration of complex,
large-scale distributed systems. In that paper, we de-
scribed a model for automatic configuration of distributed
systems, based on the use of push and pull techniques for
component updates. In this paper we extend those ideas
to the pervasive computing domain, and develop some
previously unpublished ideas.

In a previous paper on pervasive computing [KHR+00],
we discussed the requirements and problems that ubiq-
uitous computing environments impose on the operating
system and middleware and presented a prototype solu-
tion based on distributed CORBA services and reflective
middleware [KCCB02].

In this paper, we use mobile agents to present an al-
ternative solution for some of those problems, with per-
formance, scalability and flexibility advantages.

3 System Architecture

The architecture we are developing aims at providing a
flexible framework for managing three dynamic aspects of
a pervasive computing environment, namely Adaptation,
Software Evolution, and Quality of Service Negotiation.
To achieve this goal, the architecture is divided into three
subsystems.

The first subsystem is responsible for service adapta-
tion. It detects changes on the environment that might
affect the performance of a service, decides whether or not
the service should migrate to another host, and actually
migrates the service, if necessary.

The second subsystem controls the component updates
throughout the environment. Whenever a new version of
a component is released, this subsystem distributes the
new version to all relevant hosts. Conversely, whenever
an application requests a new version or an installation of
a component in which it depends, this subsystem updates
or installs the component requested.

The last subsystem is in charge of Quality of Service
(QoS) negotiation. Application that can run on multiple
QoS levels can use this subsystem to help it to negotiate
its hardware and software requirements. The subsystem

helps the user to find a suitable node on the pervasive
computing environment willing to host the application
with an acceptable quality of service level.

One can easily imagine a scenario where these three
subsystems are used together to enable an effective per-
vasive computing experience: A service is running on a
node of the distributed system when it perceives a loss
of performance, such as a large response time due to an
increase in the number of requests for that service. It,
then, decides to renegotiate its QoS requirements to pro-
vide better quality to its users. It asks an agent to roam
the environment to find a node where its new resource
requirements can be satisfied (which might be even the
same node). The agent finds a new node, but it notices
that some of the components on which the service de-
pends are missing on that node. It, then, requests the
system to install the components, while it contacts the
service to notify it of the results of its search. The ser-
vice then migrates to the new node where it can run with
the new QoS guarantees.

<<Agent>>
QoS

<<Agent>>
QoS
Broker

<<Agent>>
QoS
Broker

<<Agent>>
Service

Negotiator

<<Agent>>
QoS
Broker

<<Agent>>
QoS
Broker

<<Agent>>
QoS
Negotiator

<<Agent>>
QoS
Negotiator

<<Agent>>
QoS

<<Agent>>
QoS
Broker

<<Agent>>
QoS
Broker

<<Agent>>
QoS
Broker

<<Agent>>
Service

<<Agent>>
QoS
Broker

<<Agent>>
QoS
Broker

<<Agent>>
Service

<<Agent>>
Service

Negotiator

(1)   (2)

(4)(3)

Figure 1: UML deployment diagram of the described
scenario. A service notices a loss of performance and
requests a new level of resource reservation to the QoS
negotiator (1). The negotiator traverses the system ne-
gotiating a new contract with each node (2). The nego-
tiator notifies the service of the chosen node, while the
node updates any components it might need to run the
service (3). Finally, the service migrates to the node and
continues executing, with a better QoS contract (4).

In the next sections, we describe each of the subsystems
in detail.

2



3.1 Service Adaptation

Pervasive computing environments are very dynamic.
Many devices with completely different architectures en-
ter and leave the system all the time. These devices are
integrated to the users’ activities and aim at augmenting
their perception of the world. Thus, the pervasive ser-
vices must be very responsive to their users, having small
response times, or else this integration will not succeed.
Services must fulfill client requests under bursts or peaks
with the largest possible efficiency.

On the other hand, there is usually a lot of computa-
tional power distributed throughout a pervasive comput-
ing system. Services must be able to use all this power
and must adapt themselves to changes in the environ-
ment, reducing the impact of unusual fluctuations in the
system.

Service´s A
Clone

<<Agent>>

Service A

Node 2

<<Agent>>

Node 1

Client

Client

Client

Client Client

Client

Figure 2: UML deployment diagram for an adaptive ser-
vice. It shows Service A on Node 1 under heavy utiliza-
tion. The service notices the dynamic state and spans a
copy of itself to Node 2. New requests are now served by
Service’s A Clone

Mobile agents can easily migrate from one host to an-
other. By implementing pervasive services as mobile
agents and by detecting changes in the environment, such
as high CPU utilization, the services can search for a node
with lighter load and, using its mobile agent functional-
ity, migrate or span a copy of itself to a new node in
the pervasive environment and improve its performance.
This also increases the flexibility of the systen, since it
makes easier for the service to adapt itself to changes on
the environment.

3.2 Component Updates

Pervasive systems are composed of many computational
devices, running many different software components.
Like in any other environment, software needs to be up-
dated, e.g. due to programming errors or new feature
implementations. The point is that an active space has
far more computer devices than any other traditional dis-
tributed system and that the set of devices that compose
the system varies frequently. It is not feasible to up-
date or install components in all of the devices manually.
There must be an automatic and spontaneous mechanism
for software updates. We call this a push approach for
component update.

Moreover, software components on a pervasive com-
puting environment may depend on other components to
work. Whenever a service migrate to a new host or a
new software is installed, the dependencies needed for it
to operate properly must be satisfied. In this case, the
system pulls the required components from one of the
repositories in the Internet. We call this a pull approach
for component update.

Component
Repository

Node

Component
Repository

Component
Repository

Node

Component
Repository

Service

D

C

A

E

D

B

Service

D

C

A B

D

E

D

E

<<Agent>>

<<Agent>>

<<Agent>>

<<Agent>> <<Agent>>

<<Agent>>

<<Agent>>

<<Agent>>

<<Agent>>

<<Agent>>

<<Agent>>

<<Agent>>

<<Agent>> <<Agent>>

<<Agent>>

<<Agent>>

Figure 3: UML deployment diagram for a component up-
date. It shows a service dependent of components D e E.
The node hosting the service does not have the compo-
nents installed. The system then pulls the required com-
ponents from a remote repository. It receives not only
the components, but also all the commands required for
its installation and initialization.

Mobile agents can travel across the system carrying
component code as its data. Besides, these traveling
agents can carry customized code that is able to install
and initialize service components in the pervasive com-
puting nodes. All the commands needed to deploy the
component are encapsulated in the agent, and may ex-
ecute in parallel in many nodes. The system can also
program a path of nodes to be traversed by a single mo-
bile agent, that would then stop on each node to install
the new component.

This approach increases the scalability of the system,
since it provides an automatic mechanism to manage
components. It also has the benefits of reducing network
load, as described in [KGA+00], and increasing perfor-
mance by executing the deployment commands in parallel
throughout the pervasive system.

3.3 Quality of Service Negotiation

A pervasive computing environment is highly complex.
Thousands of devices interact with the users and with
each other to augment the users’ perception of the world
and to help them to work, study, or have fun more easily
and effectively. The interface between the users and the
environment must be simple, yet powerful, enabling them
to use the space at its maximum extents.

Multimedia will be a central part of the user interface
for pervasive applications. Multimedia interfaces can re-
ceive many different kinds of user input and can gener-
ate as many kinds of outputs, too. This feature enables

3



the creation of interfaces with greater expressive power.
But, multimedia applications are highly time-sensitive.
QoS guarantees are fundamental for an efficient perva-
sive computing experience. Therefore, services and appli-
cations must specify its software and hardware resource
requirements to work properly with a good QoS level and
to avoid affecting other applications already running in
the system.

In Section 3.1, we argued that service migration is an
important mechanism to adapt the system and improve
its performance. However, careless migration may lead to
performance reduction. The migration process is compu-
tationally expensive, and must not be carried out without
the guarantees that its benefits will not be lost in the near
future. Hence, the application must have guarantees that
the agreed QoS contract will be respected so that the mi-
gration will be cost-effective.

Application QoS negotiation may require a reasonable
amount of connected network communication, especially
in the case where the application is prepared to work with
multiple levels of quality of service. In this case, the ap-
plication must exchange several messages with the service
responsible for QoS negotiation and admission control in
the node (sometimes called QoS broker) to agree on a
contract.

Application

Node A

Application

Node A

<<Agent>>

Negotiator

Application

Node A

Broker

Node 2

Broker

Node 2

Broker

Node 3

Broker

Node 1

Broker

Node 3

Broker

Node 1

Broker

Node 2

Broker

Node 3

Broker

Node 1

<<Agent>>

Negotiator

<<Agent>>

Negotiator

Figure 4: UML deployment diagram of a QoS negotia-
tion. When an application needs to negotiate its hard-
ware and software requirements, it creates an agent with
the code that encapsulates the application-side of the ne-
gotiation based on the application’s multiple levels of
QoS. The agent then visits a group of candidate nodes
and performs the actual negotiation locally in each node.

Mobile agents can avoid the need of connected network
activity. By creating an agent with information about the
acceptable QoS levels and the logic to negotiate them, an
application can inject it into the distributed system and
wait for it to come back. The agent is then responsible
for negotiating the resources locally on each host, and
to find the host willing to make the most profitable con-
tract in the application’s point of view. This approach
brings benefits on both performance, by decoupling the
QoS negotiation process from the application and assur-
ing performance improvements when a migration occurs,
and scalability, since the agents can negotiate QoS guar-
antees with as many nodes as it might need.

4 Current status

Currently, we are developing a service capable of adapting
itself to the circumstances provided by its surrounding
environment, such as number of requests or CPU load in
its hosting device. For monitoring the load and activity
in the pervasive environment, we are using a framework
developed in our research group [dSeSEK02].

We are using Java Aglets [LO98] to develop the mobile
agents, but we are aware that some pervasive devices do
not have enough resources to run a JVM. This problem
can be solved by using lightweight agents such as the ones
used in the TACOMA project [JvRS95].

A prototype of the complete system will be ready by
the end of the first semester of 2003 and the source code
will be published on the web.

5 Related work

University of Washington’s one.world [GDL+01] is a
framework for developing pervasive applications. It is
component-oriented and implemented mostly in Java.
Typically, each node of the distributed system runs an
instance of one.world. Each instance may have many en-
vironments, which are containers for the components and
the tuples. The components, thus, are the functional part
of the system, and implement the code for one.world’s
applications. They store and communicate data using
tuples, a type of record structure.

Components in one.world can migrate from one node
to another as a means for service adaptation. However,
one.world does not use mobile agents for this task. In-
stead, they developed a mechanism for environment mi-
gration that has some functionalities of process migration
and some of mobile agents. Moreover, one.world neither
provides mechanisms for component updates nor means
for application QoS negotiation.

IBM’s Pervasive Computing Software1 is a commercial
effort to develop real-world pervasive applications and in-
frastructure for the corporate and service provider mar-
kets. At the present time, they are concentrated on four
main areas, namely, enabling of voice interfaces (through
the ViaVoice family of products), application platforms,

1www.ibm.com/pvc

4



mobile solutions, and development tools. The topics most
closely related to our work are application platforms and
mobile solutions. Under the first topic, IBM’s research
focuses on providing the infrastructure to let a customer
to migrate its existing web and e-business applications
to the new paradigm of mobile computing. Their work
addresses problems such as content adaptation and dis-
tribution, and access control. The second topic comprises
all applications already developed for pervasive comput-
ing environments. Even though this infrastructure pro-
vides services for distributing software components by us-
ing the Tivoli Personalized Services Manager, it supports
only the pull approach. Besides, this infrastructure does
not yet provide mechanisms for resource reservation or
service migration for adaptation.

The Gaia project, at the University of Illinois
at Urbana-Champaign [RC00], aims at developing a
middleware-level operating system for pervasive comput-
ing environments. They want to translate the concept
of a traditional operating system, which controls a com-
puter’s resources such as memory, processors and disk,
to an active space composed of hundreds of pervasive de-
vices. Their architecture is very comprehensive and em-
braces many different services such as Security, QoS, Au-
tomatic Configuration and Component Repository. Even
though Gaia faces some of the problems for pervasive
computing presented here, our approach is somewhat
complementary. Their research in QoS is focused on spec-
ification, representation, and requisites for QoS while we
build on that structure to provide a new mechanism for
QoS negotiation. Finally, while their research on Soft-
ware Adaptation focuses mostly on adapt applications to
the resources available when a user moves, we concen-
trated on the performance benefits of adaptive software.

6 Conclusion

We believe that mobile agents fit perfectly into the per-
vasive computing world and that they are a powerful tool
to solve many of the problems that arise in such environ-
ments.

We described in this paper three common problems in
pervasive computing and explained how mobile agents
can be used to solve them with performance, flexibility,
and scalability advantages over conventional approaches.

Based on the research presented here, we argue that
mobile agents are a key factor for developing effective per-
vasive computing infrastructures and applications. We
believe that an extensive use of mobile agents on perva-
sive computing can increase substantially the flexibility,
scalability, and performance of such systems. We also
believe that these aspects are being neglected by the on-
going research on pervasive computing and that this fact
can lead to the development of intricate and rigid systems
that may fail when deployed in real pervasive computing
environments with millions of devices.

References

[dSeSEK02] Francisco José da Silva e Silva, Markus
Endler, and Fabio Kon. Dynamic adap-
tation of distributed systems. 16th Euro-
pean Conference on Object-Oriented Pro-
gramming, June 2002.

[GDL+01] Robert Grimm, Janet Davis, Eric Lemar,
Adam MacBeth, Steven Swanson, Steven
Gribble, Tom Anderson, Brian Bershad,
Gaetano Borriello, and David Wetherall.
Programming for pervasive computing en-
vironments. Technical report, University of
Washington, June 2001.

[GWS01] Krzysztof Gajos, Luke Weisman, and
Howard Shrobe. Design Principles for Re-
source Management Systems for Intelligent
Spaces. Second International Workshop on
Self-Adaptive Software (IWSAS’01), 2001.

[HRC02] Christopher K. Hess, Manuel Roman, and
Roy H. Campbell. Building Applications for
Ubiquitous Computing Environments. In-
ternational Conference on Pervasive Com-
puting (Pervasive 2002), August 2002.

[IBM01] IBM, www.ibm.com/pvc/tech/whitepapers.
IBM Websphere Portal Server Product Ar-
chitecture, May 2001.

[JvRS95] Dag Johansen, Robbert van Renesse, and
Fred B. Schneider. An introduction to the
TACOMA distributed system. Technical re-
port, University of Tromsø and Cornell Uni-
versity, June 1995.

[KCCB02] Fabio Kon, Fábio Costa, Roy Campbell,
and Gordon Blair. The Case for Reflective
Middleware. Communications of the ACM,
45(6):33–38, June 2002.

[KGA+00] Fabio Kon, Binny Gill, Manish Anand,
Roy H. Campbell, and M. Dennis Micku-
nas. Secure dynamic reconfiguration of scal-
able CORBA systems with mobile agents. In
Proceedings of the IEEE Joint Symposium
on Agent Systems and Applications / Mo-
bile Agents (ASA/MA’2000), pages 86–98,
September 2000.

[KHR+00] Fabio Kon, Christopher Hess, Manuel
Román, Roy H. Campbell, and M. Dennis
Mickunas. A flexible, interoperable frame-
work for Active Spaces. OOPSLA’2000
Workshop on Pervasive Computing, Octo-
ber 2000.

[LA99] Danny B. Lange and Mitsuru Ashima. Seven
Good Reasons for Mobile Agents. Commu-
nications of the ACM, 42(3):88–89, March
1999.

5



[LO98] Danny B. Lange and Mitsuru Oshima.
Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, August
1998.

[RC00] Manuel Román and Roy H. Campbell. Gaia:
Enabling active spaces. 9th ACM SIGOPS
European Workshop, September 2000.

[SH00] Gerard J. M. Smit and Paul J. M. Havinga.
Lessons learned from the design of a mo-
bile multimedia system in the MOBY DICK
project. In Proceedings of the Second Inter-
national Symposium on Handheld and Ubiq-
uitous Computing, pages 85–99, November
2000.

6


