| Simpésio Brasileiro de Computacio e Misica 169

Learning Counterpoint Rules for Analysis and Generation

EDUARDO MORALES M.
ITESM - Campus Morelos, Apto. Postal C-99,
Cuernavaca, Morelos, 62050, Mézico
email: emorales@rs970.mor.itesm.mx

ROBERTO MORALES-MANZANARES
Laboratorio de Informdtica Musical (LIM)
Escuela de Misica de la Universidad de Guanajuato
Universidad de Guanajuato
Centro de Investigaciones en Matemdticas (CIMAT)
Paseo de la Presa # 152
Guanajuato, Gto., Mézico
email: roberto@kaliman.cimat.conacyt.mx

Abstract

History in composition and analysis have shown that composers using the same
patterns in structure and harmony get different results depending on the way
these patterns are resolved. In terms of musical analysis, a particular piece can
be described by a sequence of states and transitions between states represent-
ing the personal criteria that each composer pursues when solving a musical
structure. A first-order learning system, called Pal, is used to learn transition
criteria for counterpoint analysis, in the form of Horn clauses from pairs of mu-
sical states (given as sets of notes) and general purpose musical knowledge. It
is shown how the rules learned by Pal can be used for musical analysis of simple
two—voice counterpoint pieces. Similarly, a counterpoint voice can be generated
from a single voice {cantus firmus) using the learned rules. Conclusions and
future research directions are given.

1 Introduction

Musical composition generates symbolic representations (i.e., musical scores) of musical ideas. Such
ideas are based on subjective temporal interpretations of auditive events. The events are characterized
by their frequency, amplitude and its envelope (which determines the quality of tone or pitch). Such
elements, which define the musical characteristics of the musical instruments, are part of the material
which a composer uses to propose its aesthetic solutions. During this process, a composer can follow
a set of implicit or explicit rules to guide his/her preferences and express his/her ideas. Our goal is to
induce musical criteria rules that can be used for musical analysis and generation. As a first step, we
looked at counterpoint analysis, which is well understood and defined with a finite set of known rules
(Fux, 1971). Counterpoint rules can be expressed in a compact and understandable way using first-order
logic. In general, musical rules express relations between notes. In order to learn such rules we used
Pal (Morales, 1991; Morales, 1992a) an Inductive Logic Programming (ILP) system (Muggleton, 1991)
capable of learning a subset of Horn clauses from examples and background knowledge expressed as logie
programs. It is shown how Pal can learn counterpoint rules of the first specie (to be defined below) and
used them for musical analysis and generation of counterpoint notes from cantus firmus (a sequence of
single notes to which counterpoint rules are applied to generate harmonic notes). The constraints used

170 XIV Congresso da Sociedade Brasileira de Computacge

by Pal to guide its inductive search for hypothesis are discused, in the context of music and in general to

other areas where Pal has been used.
Section 2 describes some musical concepts required for counterpoint analysis. Section 3 provides some

definitions from logic. The concepts and notation will be used in the sections to follow. Section 4 briefly
describes an ILP inductive framework and Pal. Section 5 shows the main results and finally conclusions
and future work are given in section 6.

2 Musical background

The concept of musical counterpoint emerge in the 14th. century and evolve up to Gradus ad Parnassum
by Johann Joseph Fux published in 1725 (Fux, 1971). This is the first book which synthesize in form of
rules the art of polyphony considered to be correct by that time. Those rules can be considered as the
culmination of musical analysis from the 14th. until 18th. century.

Counterpoint rules can be classified between two voices (sequences of notes) into several species,
according to the number of notes involved at the same time on each voice:

e 1st: one note on one voice against one note on the other

o 2nd: two notes on one voice against one note on the other

o 3rd: four notes on one voice against one note on the other

o 4th: a whole note (of four times) on one voice against half notes (of two times) on the other
o 5th or florid: three or more notes in combination with the previous species

Our goal is to obtain similar rules as those described by Fux from examples of musical pieces and
basic musical knowledge from traditional music. Such knowledge includes the classification of intervals
(distances in height between two notes) into: consonances and dissonances. Unison, fifth and octave are
perfect consonances while third (mayor and minor) and sizth (mayor and minor) are imperfect consonance.
Second (mayor and minor), fourth, augmented fourth, diminished fifth and seventh (mayor and minor) are
dissonances.

These are the elements which account for all harmony in music. The purpose of harmony is to give
pleasure by variety of sounds through progressions from one interval to another. Progression is achieved
by motion, denoting the distance covered in passing from one interval to another in either direction, up
or down. This can occur in three ways: direct, contrary and oblique:

o direct motion: results when two or more parts ascend or descend in the same direction
o contrary motion: results when one part ascends and the other descends, or vice versa.
o obligue motion: results when one part moves while the other remains stationary

With these concepts the counterpoint rules of 1st. specie are defined as follows:

First rule: from one perfect consonance to perfect consonance one must proceed in contrary or oblique
motion

Second rule: from a perfect consonance to an imperfect consonance one may proceed in any of the three
motions

Third rule: from an imperfect consonance to a perfect consonance one must proceed in contrary or
obligue motion

Fourth rule: from one imperfect consonance to another imperfect consonance one may proceed in any
of the three motions

In section 4 it is shown how these rules are learned from a small set of examples, represented as pairs
of notes in two voices, and general musical knowledge about musical intervals. First we give a short
description of Pal.

| Simpésio Brasileiro de Computacdo e Mdsica 171

3 Preliminaries

A vartable is represented by a string of letters and digits starting with an upper case letter. A function
symbol is a lower case letter followed by a string of letters and digits. A predicate symbol is a lower
case letter followed by a string of letters and digits. A term is a constant, variable or the application of
a function symbol to the appropriate number of terms. An atom or atomic formula is the application
of a predicate symbol to the appropriate number of terms. A literalis an atom or the negation of an
atom. Two literals are compatible if they have the same symbol, name and number of arguments. The
negation symbol is . A clause is a disjunction of a finite set of literals, which can be represented as
{A1, 42, Ap,=Bi1,...,mBn}. The following notation is equivalent:

A1, Az, .. Ay = B1, By, ..., Bn.

A Horn clause is a clause with at most one positive literal (e.g., H « By, ..., Bm). The positive literal
(H) is called the head, the negative literals (all B;s) the body. A clause with empty body is a unit clause.
A set of Horn clauses is a logic program. Fy syntactically entails Fy (or Fy b Fy) iff Fy can be derived
from F) using the deductive inference rules. A substitution ©@ = {Vi/t1,Va/ta, ..., Va/ta} consists of a
finite sequence of distinct variables paired with terms. An instance of a clause C with substitution ©,
represented by C'@, is obtained by simultaneously replacing each occurrence of a component variable of
© in C by its corresponding term. A model of a logic program is an interpretation for which the clauses
express true statements. We say that Fy semantically entails Fy (or Fy |= Fa, also Fy logically implies
or entails Fy, or Fy is a logical consequence of Fy), iff every model of Fy is a model of F.

4 Pal

Inductive Logic Programming (ILP) is a fast growing research area which combines Logic Programming
and Machine Learning (Muggleton, 1991). The general setting for ILP is, given a background knowledge
K (in the form of first-order clauses) and sets of positive (£7) and negative (£7) examples, find a
hypothesis M (another set of clauses) for which K AH F £+ and K AH tf £. That is, find a hypothesis
which can explain the data in the sense that all the positive (£*) but none of the negative (£7) examples
can be deduced from the hypothesis and the background knowledge. This inductive process can be seen
as a search for logic programs over the hypothesis space and several constraints have been imposed to
limit this space and guide the search. For learning to take place efficiently, it is often crucial to structure
the hypothesis space. This can be done with a model of generalization. Searching for hypothesis can
then be seen as searching for more general clauses given a known specialized clause.

Plotkin (Plotkin, 1969; Plotkin 1971a; Plotkin, 1971b) was the first to study in a rigorous manner
the notion of generalization based on @-subsumption. Clause C'O-subsumes clause D iff there exists a
substitution ¢ such that Co C D. Clause C; is more general than clause Cy if C; ©-subsumes Cs.
Plotkin investigated the existence and properties of least general generalizations or lgg between clauses
and the lgg of clauses relative to some background knowledge or rlgg. That is, generalizations which are
less general, in terms of ©-subsumption, than any other generalization.

More recently, Buntine (Buntine, 1988) defined a model-theoretic characterization of ©-subsumption,
called generalized subsumption for Horn clauses (see (Buntine, 1988) for more details). Buntine also
suggested a method for constructing riggs using Plotkin’s lgg algorithm between clauses. The general
idea of the rlgg algorithm is to augment the body of the example clauses with facts derived from the
background knowledge definitions and the current body of the example clauses, and then generalized
these “saturated” clauses using the lgg algorithm. Pal’s learning algorithm is based on this framework
which is more formally described in Table 1.

A direct implementation of it is impractical for all but the simplest cases, as it essentially involves the
deduction of all ground atoms logically implied by the theory (see (Niblett, 1988) for a more thorough
discussion on generalization). However, rigg exists for theories without variables (as in Golem (Muggleton
& Feng, 1990)), theories without function symbols (as in Clint (deRaedt & Bruynooghe, 1988)), and when
only a finite number of facts are deducible from the theory, either by limiting the depth of the resolution
steps taken to derive facts and/or by constraining the theory, as in Pal. Even with a finite set of facts, the
lgg of two clauses can generate a very large number of literals and some additional constraints are required

172 XIV Congresso da Sociedade. Brasileira de Computaciio

Table 1: A plausible rlgg algorithm for a set of example clauses

o given:
— alogic program (K)
— a set of example clauses (SC)
o Take an example clause (Cy) from SC. Let 61,1 bea substitution grounding the

variables in the head of C) to new constants and 8y » grounding the remaining
variables to new constants

o Construct a new clause (NC) defined as:
NC=Cih U {ﬂAlJ, —\A1y2, .. } wbere
K A Crsoaybi,101,2 = A1, and A ; is a ground atom

o Set SC = SC ’"{Cl}
¢ while SC # {0}

— Take a new example clause (C;) from SC. Let 6;,1 be a substitution groux}d—
ing the variables in the head of Cj to new constants, and ;2 grounding
the remaining variables to new constants

— Construct a new clause (C}) defined as:

CJ' = C'jcgjyl U {ﬁA]',l, -Aj9, - } wbere

K A Cisoayi,10i,2 = Aj i and Ajp is a ground atom
~ Set NC' = lgg(C},NC)
— Set SC = SC—{C;}

e output NC

to achieve practical results. PAL (i) uses a pattern—based béw..ckgxtound~ knowledge representation to dirlYe
a finite set of facts and (i) applies a novel constraint which 1dent1ﬁe%s the role of the comp(;nsnls in
different example descriptions to reduce the complexity of the lgg al_goxflthm (these. are explaine p € o:&;l),

Examples in Pal are given as sets of ground atoms (e.g., descriptions of musu‘:al scores stating g
notes involved on each voice). In general, a musical score can be completely described by the t.one ail
height of each note involved, its time interval and the voice yvhgre it l?elongAsA For countgrpou(lit rtu es
of the first specie, time intervales can be ignored (we are beginning .to investigate how to include m;e
intervals in the descriptions of scores) and the examples were described by two—lplace atoms (note{ 2
stating the tone and height of each note and its voice. For instance, note(c/4, voicel) states that a
note in the center of the piano scale (4) belongs to voice one. Other notes of the same or different v01ces'
can be described in the same way. Other examples descriptions have been used in chfess '(Morales, 199hl,
Morales, 1992a) and qualitative modelling (Morales, 1992b). ‘Each example description is added to the
background knowledge from which a finite set of facts are d.erlved. .

In the musical context Pal induces pattern definitions with the following format:

Head « D1,Dz,...,Di, F1, Fa, ...

where,
o Head is the head of the musical rule (pattern definition). Instantiations of the head are regarded as

musical patterns recognized by the system.

e The D;s are “input” predicates used to describe scores (e.g., note/2) and represent the components
which are involved in the pattern.

| Simpésio Brasileiro de Computacdo e Milsica 173

e The Fis are instances of definitions which are either provided as background knowledge or learned
by Pal, and represent the conditions (e.g., relations between notes and voices) to be satisfied by the
pattern.

Pal starts with some pattern definitions as background knowledge and use them to learn new patterns.
For instance, the definition of inter_class2/3 was given to Pal as follows:

inter_class2(Notel ,Note2, Type) «
note(Notel, Voicel),
note(Note2, Voice2),
interval(Inter,Notel,Note2),
int_class(Valid,Inter, Type).

where interval/3 is a background knowledge definition that returns the musical interval between two
notes, while int_class/3 returns if an interval is valid/invalid with its type for valid intervales (i.e., perfect
conssonance, imperfect conssonance, or dissonance). This definition gets instantiated only with example
descriptions with two notes of different voices and returns if they form a perfect/imperfect consonance
or a dissonance.

Given an example description, Pal “collects” instantiations of its pattern-based background knowledge
definitions to construct an initial hypothesis clause. The head of the clause is initially constructed with
the arguments used to describe the first example description. The initial head, in conjunction with the
facts derived from the pattern definitions and the example description, constitutes an initial concept
clause. This clause is generalized by taking the lgg of it and clauses constructed from other example
descriptions.

Even with a finite theory for music, the large number of plausible facts derivable from it, makes the
finiteness irrelevant in practice (e.g., consider all the possible intervals between notes in music). In Pal
a fact F is relevant to example description D if at least one of the ground atoms of D occurs in the
derivation of F". Since PAL constructs its clauses using pattern-based definitions, only a finite set of
relevant facts are considered.

The size of the generalized clauses is limited by requiring all the variable arguments to appear at least
twice in the clause. In addition, PAL uses a novel constraint based on labelling the different components
which are used to describe examples to guide and constrained the lgg algorithm. For instance, notes in
the following example are assigned unique labels as follows:

note(c/4,voicel) ~— note(cq/4g,voicel)
note(c/B,voice2) — note(cy /5s,voice2)

The labels are kept during the derivation process, so the system can distinguish which component(s)
is(are) “responsible” for which facts derived from the background knowledge, by following the labels. For
example, instances of inter.class2/3 will use the same labels:

inter_class2(c/4,¢/5,perf.cons) — inter_class2(cq /4g,cy/55,perf_cons)

The lgg between compatible literals is guided by the associated labels to produce a smaller number of
literals, as Iggs are produced only between compatible literals with common labels (a simple matching
procedure is used for this purpose). In music this constraint identifies corresponding notes (i.e., notes
which are involved in the same relation in different examples). The labels used in one example for the

- first note are associated with the first note of another example. Thus Pal requires that the corresponding
..components are presented in the same order.

5 Experiments and results

The following musical knowledge was provided to Pal:

o inter_classi(Notel,Note2, Valid): describes if two notes from the same voice have a valid/invalid
interval. Where valid intervals can be consonances or dissonances which follow the same modality
of the cantus firmus (i.e., a Tth. or augmented 4th. would be invalid)

174 XIV Congresso da Sociedade Brasileira de Computacg,

o inter.class2(Notel, Note2, Conso): describes if two notes of different voices form a perfect or imper-
fect consonance or a dissonance

Pal was given manually the examples for each rule. It should be noted that the second author
suggested all the examples and musical knowledge without knowing the exact functioning of the system.
The number of examples required to learn each rule is given below:

Rules Rulel | Rule2 | Ruled | Ruled
Number of 6 4 5 5
examples

The first rule induced by Pal is shown below (the other three rules are very similar changing only in
the different combinations of perf.cons and imperf_cons).

rule(Notel, Note2, voicel, Noted, Note4, voice2) «

note(Notel, voicel),

note(Note2, voicel),

note(Note3, voice2),

note(Noted, voice2),

inter_class1(Notel, Note2, valid),
inter_class1(Note3, Noted, valid),
inter_class2(Notel, Interl, perf_cons),
inter.class2(Note2, Inter2, perf_cons).

The tules learned by Pal were tested for analysis on simple counterpoint pieces. We add an extra
argument to each rule to distinguished them from the rest. The analysis was made with the following
program:

analysis([Notel,Note2|RVoicel], [Note3,Noted|RVoice2],
[NumRule|Rules]) —
rule(Notel, Note2, Note3, Note4, NumRule),
analysis([Note2|RVoicel],[Note4|RVoice2],Rules).

analysis([- J,[-L,[])-

For instance, for the piece below, we obtained the following analysis:
f

Y o Iy o

o (1] (3] o oY
% A] (1] Y (4] O LU
o 43 o
XY o o [\) 43 o
(3] 0 ~ O

?7- analysis([d4,f4,e4,d4,g4,14,a4,84,/4,e4,d4],
[a4,a4,g4,a4,b4,c5,c5,b4,d5,cs5,d5],
Rules).

Rules = [r1,r4,r3,r2,r3,r2,r4,r4d,r4,r2].

The same program can be used for musical generation. For example, given the cantus firmus below, we
can generate the required counterpoint notes:

?. analysis(Notes,[d4,f4,e4,d4,g4,24,g4,f4 €4,d4] [r1,r3,13,...]).

Notes = [d3,d3,a3,13,e3,d3,£3,c4,d4,cs4,d4].

impdsio Brasileiro de Computacdo e Miisica 175

;
% 1 o

@

-
=
-]

=
®
3

5

Conclusions and future work

(Widmer, 1992), Widmer describes a system capable of learning counterpoint rules using an Explanation—
ased learning approach (de Jong, & Mooney, 1986). Unlike Pal, a generalization of the target coun-
rpoint rules is required as background knowledge, from which the more specific counterpoint rules are
erived. By contrast, Pal uses a much simpler background knowledge to induce equivalent rules:

In this paper, it is shown how Pal, an ILP system, can effectively learn simple counterpoint rules
om general purpose musical knowledge and simple example descriptions. The learned rules can be used

+ musical analysis and generation. This is an initial step towards learning more complicated musical
les expressing personal criteria follow by composers. If we succeed in our goal, the learned rules would
rovide explicit knowledge of preference criteria follow by composers. This knowledge could be used for
nalysis and provide suggestions for musical compositions.

eferences

. Buntine (1988). Generalised subsumption an its applications to induction and redundancy. Artifi-

cial Intelligence, 36(2):149-176.

e Raedt, L. & Bruynooghe M. (1988). On Interactive Concept-Learning and Assimilation. In D. Slee—

man & J. Richmond (Eds.), Proc. of the third european working session on learning, EWSL~88, pp.

167-176, London, Pittman.

x, J.J. (1971). Gradus ad Parnassum, 1725. Translated and edited by Alfred Mann, W.W. Norton &

Company.

orla,les, E. (1991). Learning Features by Experimentation in Chess. In Y. Kodratoff (Eds.) Procee-

dings of the European Working Session on Learning, (EWSL~91), pp. 494-511, Berlin, Springer—

Verlag.

orales E. (1992a). Learning Chess Patterns. In S. Muggleton (Eds.), Inductive Logic Programming,

pp- 517-537, London, Academic Press, The Apic Series.

orales, E. (1992b). Tirst-Order Induction of Patterns in Chess, Ph.D. Thesis, The Turing Institue —

University of Strathclyde, Glasgow.

uggleton 8. & Feng, C. (1990). Efficient induction of logic programs. In S. Arikaxa, S. Soto, S. Oh—

suya, & T. Yokomari (Eds.), Proceedings of First International Workshop on Algorithmic Learning

: heory, (ALT90), pp. 368381, Tokyo, Japan, Ohmsha.

uggleton, S. (1991). Inductive Logic Programming, New Generation Computing 8: 295-318.

blett, T (1988).. A study of generalisation in logic programs. In D. Sleeman & J. Richmond (Eds.),

ff‘oc. of the Third European Working Session on Learning (EWSL-88), pp. 131-138, Glasgow, Pitt~

Iman,

Otkin,‘G,D. (1969) A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine

fﬂiffllzgence 5, pp. 153-163, Edinburgh, Edinburgh University Press.

;t{kln,lG,D, (19713,). A furhter note on inductive generalisation. In B. Meltzer & D. Michie (Eds.),
‘(l.Chme Intelligence 6, pages 101-124, Edinburgh, Edinburgh University Press.

thm, G.D. (1971Db). Automatic Methods of Inductive Inference. Ph.D. Thests, Edinburgh, Edin~

birgh University.

‘,d’gefy.Gv. (1992). The importance of basic musical knowledge for effective learning, In M. Balaban,
bCl.(ngu & O. Laske (Eds.), Understandig Musica with AI: Perspectives on Music Cognition,

‘mbndge - Menlo Park: AAAI Press/MIT Press.

