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Abstract

In this paper we introduce the fundamentals of ARTIST (an acronym for Artificial
Intelligence-aided Synthesis Tool). ARTIST is a tool for the design of intelligent
assistants for sound synthesis that allow composition of sounds thought of in terms
of qualitative descriptions (e.g. words in English) and intuitive operations rather
than low level computer programming. Our research work is looking for (a)
plausible strategies to map the composer's intuitive notion of sounds to the
parametric control of electronic sound synthesis and (b) how to provide artificial
intelligence (AI) to a synthesiser. In this paper we introduce how we attempted to
approach the problem by means of a compilation of a few well known expert
systems design techniques used in Al research. ARTIST is a prototype system
which embodies the results of our investigation so far.

Keywords: Al-based synthesiser, knowledge-based systems, machine learning

Introduction

In the final quarter of the 20th century the invention of sound recording followed by sound
processing and then sound synthesis have changed our view of what constitutes music. These recent
developments have vastly expanded our knowledge of the nature of sounds. Nowadays, computer
technology offers cornposers the most detailed control of the internal parameters of sound synthesis
and signal processing.

Wanting the effective use of the new technology, composers become more ambitious, but the
complexity also increases. The scale and nature of the compositional task changes, technically and
aesthetically. Theoretically the computer can be programmed to generate any sound one can imagine.
But, on the other hand, this can get composers into trouble. Quoting Bartizre (1989, pp. 116),"ir is 100
easy 1o fail to take various consequences info account, to get technology side-tracked by a tool whose
fascinating complexity can become a disastrous mirage”.

Even if the composer knows the role played by each single parameter for synthesising a
sound, the traditional way of working with computer synthesis, tediously entering exact data at the
terminal, is not particularly stimulating. We are convinced that higher processes of inventive creativity
and musical abstraction are often prejudiced in such a situation. In this case we think that the computer
is being used as a kind of word processor combined with player piano, and not as a creative tool. We
have come to believe that this can be improved by means of an appropriate coupling between human
imagination and artificial intelligence (Al).

In this paper, we introduce the fundamentals of ARTIST (an acronym for Artificial
Intelligence-aided Synthesis Tool). ARTIST is a tool for the design of intelligent assistants for sound
synthesis that allow composition of sounds thought of in terms of intuitive qualitative descriptions (e.g.
words in English) rather than low level computer programming (Miranda et al, 1993a; 1993b;
Miranda, 1994a; 1994b; 1994¢). By an intelligent assistant we mean a system which works co-
operatively with the user by providing useful levels of automated reasoning in order to support
laborious and tedious tasks (such as working out an appropriate stream of synthesis parameters for
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each desired single sound), and to aid the user to explore possible alternatives when designing a sound.
The desirable capabiities of such a system can be summarised as follows:

(a) The ability to operate the system by means of an intuitive vocabulary instead of sound
synthesis numerical values,

(b) The ability to customise the system according to the user's particular needs, ranging from
defining which synthesis technique(s) will be used to defining the vocabulary for
communication,

(¢) The encouragement of the use of the computer as a collaborator in the process of exploring
ideas,

(d) The ability to aid the user in concept formation, such as the generalisation of common
characteristics among sounds and their classification according to prominent attributes, and

(e) The ability of creating contexts which augments the chances of something unexpected and
interesting happening, such as an unimagined sound out of an ill-defined requirement.

Apart from graphic workstations (such as the UPIC system (Xenakis, 1992; Marino ¢t al.,
1993; Lohner, 1986)) and medium level programming languages (see (Pennycook, 1985) for a survey),
little research has been done towards a system for sound synthesis that responds to higher levels of
sound description. An early attempt at the definition of a grammar for sound synthesis was made by
Holtzman (1978) at Edinburgh University. Also, Stawson (1985) bas proposed - not implemented on a
machine though - a kind of vocabulary for sound composition based on his theory of sound colour
which, we believe, he made up from Helmholtz's theory of vowel qualities of tones (Helmholtz, 1885).
Lerdahl (1987) too has done some sketches towards a hierarchical perceptually-orientated description
of timbres. Apart from these, it is worth mentioning that there have been a few attempts towards signal
processing systems that understand natural language. The most successful ones are interfaces
developed to function as a front end for systems which perform tasks to do with audio recording studio
techniques such as, mixing, equalisation, and multitracking (c.g. CIMS (Schmidt, 1987) and Elthar
(Garton, 1989)). More recently, Ethington and Punch (1994) proposed a software called SeaWave.
SeaWave is an additive synthesiser (Dodge and Jerse, 1985) in which sounds can be produced by
means of a vocabulary of descriptive terms. Although of a limited scope, SeaWave proffers an
excellent insight and it seems to work well, Vertegal and Bonis (1994) also have been working
towards a cognitive-orientated interface for synthesisers.

We begin the paper by introducing the problem from a musician's point of view. Then we
introduce the signal processing of the synthesiser which will be used as an example study. After this,
we indicate some methods for describing sounds by means of their atributes and suggest a technique
for mapping those attributes onto the parameters of a synthesiser. Then we study how this technique
works and present some examples. Here, we also study the utility and the functioning of machine
learning in this kind of system. Finally, we propose a system architecture which embodies all the
concepts discussed so far and introduce its functioning through examples. We end the paper with some
final remarks and ongoing work.

An example study synthesiser

Assume that we wish a synthesiser which is able to produce human voice-like sounds. It is
worth mentioning that to produce a perfect simulation of the human vocal tract is out of the scope of
this paper. Thus, rather than making a description of the fundamental aspects of the phenomenon by
means of a set of equations (e.g. (Woodhouse, 1992; Keefe, 1992)), we opted for observing it by means
of a more traditional formant modelling technique which uses subtractive synthesis (Flanagan, 1984;
Klatt, 1990; Sundberg, 1991; Miranda, 1992; 1993). We come to believe that this level of description
(see also (Eckel, 1993) for a brief discussion about this business) suffices at this moment. The signal
processing diagram of our example study synthesiser is shown in Figure 1.

Each block of the diagram (except the Envelope) is composed of several signal processing
units (SPU). A composition of SPU's form sub-blocks within a block. Sub-blocks in turn may
constitute sub-sub-blocks, and so forth. The Voicing Source, for example, has two sub-blocks: one, the
Vibrato sub-block, contains an oscillator unit, and the other, the Pulse Generator sub-block, contains a
puise generator unit (Figure 2).

Each SPU needs parameter values for functioning. We say that, in order to produce a certain
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Figure 1 The example study architecture.
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Describing sound by means of their attributes

There have been several studies defining a framework to systematically describe sounds by
means of their attributes ((Schaeffer, 1966; von Bismark, 1971; 1974a; 1974b; Cogan, 1984; Giomi &
Ligabue, 1992; Carpenter, 1990; Terhardt, 1974) to cite but a few). They are derived mainly from
work in the ficlds of both psychoacoustics and musical analysis. We classify these studies in two
approaches: on the one hand, the device-orientated approach and, on the other hand, the perceprually-
2riejztated approach. As it is not our aim to survey all these, we have selected one example of a




206 X1V Congresso da Sociedade Brasileira de Computacio

I Simpésio Brasileiro de Computagio e Mdsica

207

The source-filter model: a device-orientated approach

\ ilter 2 C isti d is determined by its
The source-filter model formulates that the charactt_arxstlg of a soun

spectrum envelope's pattern. This pattern is composed of multiple hills called formants. Each formant
has a centre frequency peak and a bandwidth. According to this model, the lowest two formants are

+ sionificant determinants of sound quality. o
the mos Tk%g pattern of the spectrum envelope of formant frequencies 18 thought of as the result of a
lex filter through which a source sound passes. .

comp We can define here a two-dimensional space whose axes are the f_lrst (£(1)) and the second
(£(2)) centre formant frequencies respectively. ‘Then, four perceptual att_r{butes, namcl)_/ openness,
acuteness, smallness, and laxness (after Slawson, 1985; 1987, can be specified as cgltegprxes of equal-
values contours in this space. The attribute openness varies with f(l)_, acuteness wx.(h £(2), smallness
with the sum of f(1) + £(2), and laxness varies towards a neutral position in the middle of the space

(Figure 3).

Figure 3: Two-dimensional sound space.
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The notion of Abstract Seund Schema(ASS)

£ i C i designed for describing a
The Abstract Sound Schema (ASS) is the representation scheme we demgzx‘e :
o wponents and the relations between them. The ASS scheme is

sound in terms of its perceptual con .
constituted of: nodes, slots, and links. Nodes and slots are the components, and the links correspond to

the relations between them. The links are labelled. ) . »
The ASS is, in fact, a tree-like abstract data structure whose ultimate nodes (the leaves) are
! ¢ is datum,
slots. Each slot has a name and accommodates a sound synthesis datum. " .
Slots are grouped bottom up into higher level nodes, which in tum are grouped into higher
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Figure 4: The ASS representation scheme.

Implementing a sound event by means of the schema

We have seen before (Figure 1) that the synthesiser is composed of several connected blocks
(Voicing Source, Noise Source, etc.), one of each responsibie for a certain sound attribute. We can
now define a compound sound event by means of the ASS scheme. Each component of the sound
event is responsible for a certain aspect of the sound quality.

The leaves of the sound event are slots corresponding to the several sound synthesis
parameters. Slots are grouped into nodes of a higher level layer, which in turn are grouped into nodes
of a higher level, and so forth, up to the root of the tree (the sound event).

Figure 5 shows a partial definition of a sound event of the synthesiser shown in Figure 1.
Although not shown in this figure, the links among the sound-event's components are labelled
has_component. They represent the offspring relation among nodes.

The partial sound event definition shown in Figure 5 can be implemented in Prolog as shown
below. Each clause represents a has_component relationship between two atoms. The first clause, for
example, is read: ‘a sound event has a component called voicing source’. A interpretation of the whole
layer 1, for example, is: 'the sound event has two components named voicing source and formant
resonators’. .

% % %o layer 1

%o Yo Yo

has_component{ sound_event, voicing_source ).
has_component{ sound_event, formant_resonators ).
9o Yo Yo

%o % %o layer 2

Yo Yo %o

has_component( voicing_source, vibrato ).
has_component( voicing_source, pulse_generator ).
has_component( formant_resonators, formant(1} ).
has_component( formant_resonators, formant(2)).
has_component( formant_resonators, formant(3) ).

Yo Yo %o

% % % layer 3

Yo Yo %o .
has_component( vibrato, rate). % vibrato rate
has_component( vibrato, wdth ). % vibrato width
has_component( pulse_generator, £(0) ). % fundamental frequency

has_component( formant(1), £(1) ).
has_component( formant(1), bw(1)).
has_component( formant(2), f(2)).
has_component( formant(2), b(w2) ).
has_component{ formant(3), (3} ).
has_component( formant(3), bw(3) ).

% 1st formant frequency
% 1st formant bandwidth
% 2nd formant frequency
% 2nd formant bandwidth
% 3rd formant frequency
% 3rd formant bandwidth
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Figure 5: Partial sound event definition.
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All the slots of the ASS must be filled in order to completely specify a sound. We say that a
completely specified sound is an assemblage. For each different sound there is a particular
assemblage. Thinking of this synthesiser as a (rough) model of the vocal tract mechanism, an

assemblage would correspond to a certain position of the vocal tract in order to produce a sound.
Sound hierarchy and the inheritance mechanism

Recapitulating, we have defined a general abstract scheme for representing a sound. Then we
defined and implemented the notion of the sound event by means of this scheme. We also introduced
the idea of assemblage. It was explained that an assemblage occurs when all the slots of the scheme
are properly filled. In this case, each assemblage corresponds to a particular sound.

In practice, sounds are represented in a knowledge base as a collection of siot values. In other
words, the knowledge for the assemblage of a particular sound is clustered around a collection of slot
values. An assemblage engine is then responsible for taking the appropriate slot values and
'assembling' the desired sound.

The following Prolog facts correspond to an example knowledge base which contains siot
values for the (partial) sound event definition shown in Figure 5. Kach clause represents a sloz. It has
two atoms: the first is a reference name and the second is a tuple. The reference name is an atom
which identifies the affiliation of the slot, i.c. which cluster it belongs to. The first element of the tuple
is the name of the slot and the second element is the value of the slot. This value can be either a
number, a word, or a formula for calculating its value (these will be dealt later). This example
knowledge base contains information about three sounds, namely back vowel, front vowel, and vowel
/a/.

% %% back vowel

Yo Yo Yo

slot( vowel(back), [ rate, 5.2 1).
slot{ vowel(back), [ wdth, 0.06 ]).
stot( vowel(back), [ £(0), 155.561).
slot( vowel(back), [ (1), 622.251).
slot( vowel(back), [ f(2), 1244.51).
slot( vowel(back), [ £(3),2637 }).
slot( vowel(back), [ bw(L), 74.65] )
slot( vowel(back), [ bw(2),561).
slot( vowel{back), [ bw(3), 131.85] ).
Do Yo %o

% % % front vowel

%o % %o

slot( vowel(front), [ rate,5.57).
slot( vowel(front), [ wdth, 0.06 J).

L e e\

slot( vowel{front), [ £(1), 559.371).
slot( vowel,front), [ £(2), 1108.7]).
slot( vowel{front}, [ £(3),26371]).
slot( vowel(front), { bw(1),7831).
slot( vowel(front), [ bw(2),110.81).
slot( vowel(front), [ bw(3),131.851).
% %o Yo

% % % vowel /al

Do Yo Yo

slot( vowel(a), | a_kind_of, vowel(back) ).
slot( vowel(a), [ £(0), 103.831).

Note that the representation of the sound vowel(a) is different from the other two: it is
incomplete (i.e. there are no slot values for the vibrato nor for the formant resonators). On the other
hand, there is new information in it. The new information, called a_kind_of, is not a simple sound
event slot, as it might appear to be, but it is a link (see Figure 6). This is a link which associates one
collection of slots with other collection of slots.

The link a_kind_of allows a hierarchical organisation of the knowledge. The ability to
represent the relationship between slot collections hierarchically is useful for inheritance relation.
Inheritance is a relation by which an individual assumes the properties of its class and by which
properties of a class are passed on to its subclass. Thus, when a slot collection for a sound is attached
to another slot collection at a higher level, the former inherits properties of the latter. The first fact of
the third cluster of slots listed above states that a vowel(a) is a_kind_of vowel(back). This is to say
that slots not defined for vowel(a) will be filled with slot values taken from vowel(back) (Figure 6). In
practice, the assembler engine has to 'know' that the missing slots in one level are inherited from a
higher level.

Figure 6: The example knowledge base has information about three
sounds. Each sound is represented as a collection of slot values.
Note that vowel(a) inherits slots from vowel(back).
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The notion of partial assemblage

We ought to make the assembler engine flexible so that it also may assemble single internal
nodes of the schema. In other words, besides the assemblage of the whole scheme there might be
{nartial} aceamhblaagere of onlv certain nodes
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Let us observe again the example shown in Figure 5. It has a branch of filters which
constitute three formant resonators, Taking as an example only the node formant(1) , we say that it
needs only its affiliated slots (namely £(1) and bw(1)) for assemblage.

The advantage of being able to think in terms of assemblages of single nodes, as an aiternative
10 the solely ASS root asscmblage, is that now one can attach non-numerical attribute values (i.c.
words in English) to partial assemblages too. For instance, one could refer to the node formant(1) as
Tow and wide if it has f(1) = 250 Hz and bw(1) = 200 Hz. This is also represented in the knowledge
base as a cluster of slots. Example:

slot( [ formant(1), low_and_wide ], { f(1), 250]).
slot( { formant(1), low_and_wide ], [ bw(1), 200]).

Now, for each node of the schema one can define a set of possible non-numerical attribute
values. Back to figure 5, the slots rate, and wdth constitute a node called vibrato which in turn, with
the node pulse generator, forms the higher level node voicing source. One could establish here that
the possible attribute values for vibrato are none, uniform, and too slow. Each of these attributes will
then correspond to either a numerical vatue or to a range of values within a certain interval. For
example, one could say that vibrato is none if rate = ¢ Hz, and wdth = ¢ %. The node voicing source
could be similarly defined: one could establish that voicing source is steady low if vibrato = none and
pulse generator = 55 Hz, for example.

Hypothetically considering only this left part of the example schema shown in Figure 4, a
sound, say sound(a), could be described as having steady low voicing source and none vibrato. See
example below:

slot( [ vibrato, none },[ rate,01).

slot( [ vibrato, none 1,{ wdth,01]).

slot( [ voicing_source, steady_low ], [ vibrato, none }).
slot( [ voicing_source, steady_low ], | pulse_generator, 55]).
slot( [ sound(a), [ voicing_source, steady_low }),

slot( [ sound(a), [ vibrato, none }).

The role of machine learning

In this section we will study the role played by two machine learning techniques in our
proposed system, namely inductive learning and supervised deductive learning. Both are well known
techniques which have been satisfactorily used in expert systems (see (Dietterich and Michalski, 1981;
Quinlan, 1982; Winston, 1984; Bratko, 1990; Carbonell, 1990) for a survey).

The target of inductive learning here is to induce general concept descriptions of sounds from
a set of examples. A further aim is to allow the computer to use automatically induced concept
descriptions in order to identify unknown sounds or possibly suggest missing attributes of an
incomplete sound description. Our main reason for inducing rules about sounds is that the computer
can then aid the user to explore among possible alternatives during the design a certain sound. Here
the user would be able to ask the system to 'play something that sounds similar to a bell’ or even ‘play
a kind of dull sound', for example. In these cases the system will consult induced rules in order to
work out which attributes are relevant for synthesising a bell-like sound or a sound with dull colour
attribute (Smaill et al. 1993).

An example rale, when looking for a description for, say sound(c), on the basis of some
examples, could be as follows:

sound(c) = { [ vibrato = fast ], [openness =high } }
The interpretation of the above rule is as follows:

A sound is sound(c) if:
it has fast vibrato and
high openness.

No matter how many attributes sound(c) had in the training set, according to the above rule,
the most relevant attributes for this sound are vibrato = normal and openness = high. 'Most relevant’
here means what is most important for distinguishing sound(c) form other sounds of the input training
set. In this case, if the system is asked to synthesise a sound with fast vibrato and high openness,
than 1f will neadnee eonnd(c)
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The target of supervised deductive learning in our system is to altow the computer to update
its knowledge about attribute values throughout user interaction. We remind the reader the fact that the
input requirement for producing a sound can contain either or both: attribute values (e.g. vibrato =
none) or slot values (e.g. f(0) = 55 Hz). The aim of supervised deductive learning here is at allowing
the computer to infer whether or not input slot values (in a requirement) match with known attribute
values. If there is no matching, then the system automatically adds this yet unknown information to
the knowledge base and asks the user to give a name for this novel deduced attribute value. Suppose
that the system knows three values for the attribute vibrato:

vibrato = uniform if { rate = 5.2 Hz, wdth=3 % }
vibrato = too slow if { rate =3.6 Hz, wdth=3 % }
vibrato = none if { rate = 0 Hz, wdth=0 % }

If the user requites a sound with (vibrato) rate = 12 Hz, for example, then the system will
synthesise it and deduce that there is no attribute value for vibrato in the knowledge base whose rate is
equal 12 Hz. In this case the system adds this new information to the knowledge base, works out the
other slot values needed to create this new attribute value, and ask the user to name it. Let us say, for
example, that the user wishes to call it tremolo. Eventually the system will add the following
information in its knowledge base:

vibrato = tremolo if { rate=12 Hz, wdth=3 % }

Towards a system architecture

User configuration is one of the desirable capabilities of this system. Therefore rather than
providing a closed architecture which reflects both a particular synthesiser and a particular vocabulary
for sound description, we propose an architecture which provides open-ended modules (Figure 7).

This system architecture provides means for handling information about sound synthesis but it
remains open-ended regarding what the information is about.

Engines and services provided by the system

The role of the assembler engine and the functioning of the machine learning engine modules
have already been introduced.

The machine learning engine module performs the two kinds of learning: inductive learning
and supervised deductive learning, just discussed above. The training set for the inductive learning
mechanism is given either by the user or it is automatically produced by the system by consulting its
own knowledge base. The input for the supervised deductive Jearning mechanism is provided partly by
the system and partly by the user.

The user interface modale provides means for communicating with the system. Here the user
can activate the assembler engine in order to produce a sound, consult the status of the system (such as
the content of the induced rules module and the content of the knowledge base moduie), and input any
external information the system might need (such as the names for new sounds and attributes, and
training sets).

Information internally generated and administered by the system

The inductive rules module holds the information internally generated by the system as the
result of the inductive learning. As its name suggests this module contains rules which were induced
by the machine learning engine module.

User specified modules

These are the open-ended modules. They define the domain of the system, that is, the sonic
world the system will deal with. Here the user implements the instrument (i.c. the synthesis algorithm),
the schema on the top of it, the knowledge base whose information is used to 'play’ it, a dictionary of
slot values, and a theory for the instrument, using Prolog (Bratko, 1990).
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Figure 7: The proposed system architecture.
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The modules of the architecture are classified in three groups:

D User specified modules

Information automatically generated by the system

Engines and services provided by the system

Default libraries of such modules can be provided in case the user does not wish start from
scratch, However, as these modules are to be user customised, it may not always be very useful to
exchange highly customised libraries with other users.

Firstly, the user specifies the instrument module. This can be done by means of any suitable
SWSS (Software for Sound Synthesis) package, such as CLM, (Schotstaedt, 1992), Csound (Vercoe,
1991), Mosaic (Morrison and Waxman, 1991), or ISPW Max (Puckette et al,, 1992), to name but a
few. Having specified the instrument then the user implements the schema on the top of it. Secondly,
the knowledge base module is specified. In this module the uscr creates clusters of stot values. As it
was mentioned before, each cluster cortesponds to an instantation of either a whole sound event or an
internal node of the schema, i.¢. a sound attribute. Thirdly, the user builds the dictionary module. In
this module the user specifies the meaning of the vocabulary for speaking about slots, i.e. about cach
parameter of the instrument. Each word of the vocabulary for slots may mean either a numerical
synthesis parameter Of & pointer to a formula for calculating it. Finally, the user specifies a theory for
the instrument. A theory is a set of formulas for calculating slot values. These formulas can calculate
values either based on other siot values or by the random choice of a value within a certain interval.

As the system is to start with a certain body of knowledge which will be expanded through
user interaction, these specifications do not need to be exhaustive.
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An example functioning

Let us study an example functioning of the architecture explai
L ( . plained above. Assume th:
following information can be used in order to assemble the scheme of Figure 5. athe

Knowledge base module;

slot( sound_event( sound(c) ), [ rate, fast} ).

slot{ sound_event( sound(c) ), [ wdth, default]).
slot{ sound_event( sound(c) ), [ £(0), low ]).

slot( sound_event( sound(c) ), { openness, high] ).
slot( sound_event( sound(c) ), [ acuteness, low ).
slot( sound_event( sound(c) ), [ £(3), 2637 1).

slot( sound_event( sound{(c) ), [ bw(3), 131.85]).

slot( attribute( [ openness, low 1), [ £(1), low ]).
slot( attribute( [ openness, low 1), [ bw(1), 74.65 ).

slot( attribute( [ openness, high 1), [ f(1), high 1).
slot( attribute( [ openness, high 1),{ bw(1), 783 1).

slot( attribute( [ acuteness, low 1), { f(2), low }).
slot{ attribute( [ acuteness, low 1),{ bw(2),110.81).

ete.

Dictionary module:

dict{ slot( £(1) ), [ value( low, 290),
value( medium, 400 ),
value( high, 650)1).
dict( slot(£(2) ), [ value( low, 1028),
value( medium, 1700),
value( high, 1870)1).
dict( slot( £(0) ), value( low, 220), .

value( medium,  rule( £(0), medium ) )
value( high, rule( £(0), high))1).
etc.

Theory module:
instrument_theory( rule( £(0), medium ), FO ):-
get_value( f(0), low, V ),
FOisV*2,
etc.
. Suppose that a training set has been input and the system has already induced some rules, such
s ’
sound(a) = { [openness = low } }
sound(b) = { { £(0) = medium ] }
sound(c) = { [ rate = fast |, [ f(0) =low ] }
ete
Now, let us suppose two hypothetical queries and examine what ARTIST would do in order to
compute them.
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Example query 1:
Produce a sound with fast vibrato rate and low pitch.
ARTIST functioning 1:
Firstly, the system consults the induced rules in order to find out if it knows any
sound whose most prominent features are rate = fast and f(0) = low. Inthis case, there is a
rule which tells that sound(c) matches this requirement. Thus, sound(c) will be produced.

Before assembling the schema, the system consults the dictionary in order to compute the
slots whose values are represented by aword (e.g. f(0) = low actually means 220 Hz).

Example query 2:
Produce a sound with medium pitch and high openness.

ARTIST functioning 2;

In this case the system has no matching induced rules. Thus, this sound will be
created from scratch. The system consults the dictionary in order to compute the values of
f(0) = medium and f(I) = high, and automatically completes the missing slot data with
default values. Note that instead of a value for f(0) = medium, the dictionary points to a rule.
In this case, the system consults the theory module in order to calculate it. The theory says
that this value corresponds to the double value of f(0) = low. Therefore, f(0) = medium here
means 440 Hz. The sound is then produced, the user is asked to name it, and a novel cluster
of slot values is automatically created in the knowledge base for representing it.

Conclusion and further work

In this paper we introduced the fundamentals of ARTIST: a tool for the design of intelligent
assitants for sound synthesis.

ARTIST is provided with some degree of automated reasoning which supports the laborious
and tedious task of writing down number sequences for generating a single sound on a computer. A
'synthesiser’ implemented by means of ARTIST is provided with a certain knowledge about sound
synthesis and it is able to infer the necessary parameters values for a sound from a quasi-natural
language sound description.

Although the user has to specify the information of the knowledge base (i.e. the synthesis
algorithm(s) and the vocabulary for sound description) beforehand, this does not necessatily need to be
exhaustive. The system is to begin with a minimum amount of information about certain sounds and
attributes, but it is able to automatically expand the scope of its knowledge by acquiring new
information through user interaction.

At the moment we are developing a higher level interface for the user specified modules. We
wish to enable the user to specify these modules by means of natural language-like statements, instead
of Prolog. We aiso plan to devise a visual interface for the specification of some attributes, such as
envelopes, for example.

ARTIST is being tested using synthesis by physical modelling technique (Roads, 1993). It
seems that this technique matches many of the concepts developed in this paper, such as the
representation of sound atuributes and the mapping of these to synthesis parameters.

We are aware that ARTIST is still in its infancy. For the moment we regard it as a suggestive
and plagsible starting point only.
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Abstract

This paper considers the problem of simulating Jazz improvisation and
accompaniment. Unlike most current approaches, we try to model the musicians’
behavior by taking into account their experience and how they use it with respect to
the evolving contexts of live performance. To represent this experience we introduce
the notion of Musical Memory, which cxploits the principles of Case-Based
Reasoning (Schank & Ricsbeck 1989). To produce live music using this Musical
Memory we propose a problem solving method based on the notion of PACTs
(Potential ACTions) (Ramalho & Ganascia 1994b). These PACTs are a generic
framework for representing the musical actions that are activated according to the
context and then combined in order to produce notes.

1 - Introduction

This paper considers the problem of simulating the behavior of a bass player in the context of Jazz live
performance. We have chosen to work on Jazz improvisation and accompaniment because of their spontaneity, in
contrast to the formal aesthetic of contemporary classical music composition. From an Al point of view,
modeling Jazz performance raises interesting problems since performance requires both theoretical knowledge and
_great skill. In addition, Jazz musicians arc encouraged to develop their musical abilities by listening and
practicing rather than studying in conservatoires (Baker 1980).

In Section 2 we present briefly the problems of modeling musical creativity in Jazz performance. We show
the relevance of taking into account the facl that musicians integrate rules and memories dynamically according
to the context. In Section 3 we introduce the notion of PACTs, the basic element of our model. In Section 4, we
give a general description of our model and show particularly how the composition module integrates the two
above-mentioned notions to create music. In the last section we discuss our current work and directions for
~further developments.

2 - Modeling Musical Creativity
2.1 - The Problem and the Current Approaches

The tasks of improvisation and accompaniment consist in playing notes (melodies and/or chords) according
1o guidelines laid down in a given chord grid (sequence of chords underlying the song). Musicians cannot justify
all the local choices they make (typically at note-level) even if they have consciously applied some strategies in
the performance. This is the greatest problem of modeling the knowledge used to fill the large gap referred to
above (Ramalho & Pachet 1994). To face this problem, the first approach is to make random-oriented choices
from a library of musical patterns weighted according o their frequency of use (Ames & Domino 1992). The
second approach focuses on very detailed descriptions so as to obtain a complete explanation of musical choices
in terms of rules or grammars (Steedman 1984). Regardless of its musical results, the random-based approach




