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with near but distinct x,. In short, such a measure would provide a means to gain control over the
predictabilty of the system behavior, thus making possible the user's meaningful choices of . Indeed, in
many cases higher iterates will certainly not result into sounds of more interesting structural properties -
though they will certainly result in a longer computation time. Sometimes a large n may even destroy in
the signal any observable relation with the signal's generating orbit in the phase space.

Some conclusions

Relavant theoretical details and the empirical use of synthesis by functional iteration must be both
investigated in more depth. This is necessary, although a most peculiar aspect of such approach to sound
synthesis lies exactly in the possibility of an explorative, nonlinear style of sonic design. Indeed, it is
dubious that further analytical knowledge would make the model of better use in a linear and completely
deterministic approach. Functional iteration synthesis provide indeterministic models of sonic material:
the composer must learn his/her strategy by interacting with a source of structured information activated
at the level of the microstructure of music, within and through the sound.

We think that the concept of iteration, being a concrete source of unpredictable but self-
organized, consistent behavior, can capture large-scale design features which are particularly useful
when one works at the microstructural level of sound. Methods of chaos theory have been already
proposed and used as models of syntactical articulation of music (Pressing, 1988) and as powerful
control structures of granular synthesis techniques (Di Scipio, 1990; Truax, 1990b). Our study proposes
the extension of this approach to the level of the sample itself, by operationalizing a model of
sonological emergence which projects the compositional process down to the micro-time scale in the
musical structure. In so doing, it also implies a blurring of the conventional distinction between sound
and structure, since with this kind of model the composer can generate entire fabrics of sound events
and extended sonic textures that can hardly be perceived and conceived as separate partial components
of the musical structure.
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Abstract

This paper explains a system developed at ths Laporatorlio de Invesfigaci(‘)n. y
Produccién Musical (LIPM), for modular programming gf instruments in cmusic.
The system allows users to build up their own patche§ using ready-made pieces of
code, in a self-explanatory process. Every musician trained in .hard\.vare synthesizers
programming can easily develop a complex instrument following sxml')le rules, what
turns it useful both for composition and for teaching software syn.thems. T hc? system
allows coherent connections between envelope generators, devices for pitch ar.1d
amplitude modulation, and for additive, subtractive, FM and wave.shapmg synthesis.
As it is made exclusively of cmusic operators, users can add their own modules to

follow their particular needs.

What it is

AMI (Aid of Modular Instruments) is an attempt to develop a user-friendly interface for instrument

rogramming in cmusic. . ' ‘
P gThe system allows the user to design complex instruments by adding simple modules. These modules are

easily understood by every musician trained in hardware synthesizers programming, and their names are self-

explanatory.

What it does

In its present state, the system allows coherent connections between envelope generators, devxc.:es. for' pltC};
and amplitude modulation, for additive, subtractive, FM and waveshaping synthesis, and for spatialization o

sound.

User interface

Users build up their own patches by assembling modules, that are ready_—mz}de pieces qt’ 'code. Thedsyst;em
guarantees the coherence of connections between modules. By following certain simple rules it is easy to develop
a complex instrument, because the constitutive parts are already debugged.

The resultant instrument is later invoked from the score by means of a macro.
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What it looks like

A patch designed with AMI is a macro, that is interpreted by the C preprocessor before compiling the
cmusic score. The modules that compose the instrument are invoked by other macros, nested in the main one.

An instrument definition in AMI should have the following parts:

1) Header: here is the #define directive, the name of the instrument and its arguments (the parameters that are
left open to be controlled from the score).

2) A module (WHEN), that sets the action time for all of them.

3) A module for defining the use of global control for the amplitude.

4) Units for controlling the different aspects of sound (frequency, intensity, spectrum), and their evolution
upon time. Some of these modules are specific for a particular synthesis system, others are common to all of
them,

5) A module for the audio output.

Let's see an example:

#define FMPAIR(beginning,duration,intensity,note)\ <-- header
WHEN(beginning,duration) <-- action time
NOGLOBALAMP\ <-- global control of amplitude
NOTREMOLO\ <-- tremolo unit
NOENVPITCH\ <-- pitch envelope
NOVIBRATO\ <-- vibrato unit
NOMODULATORI\ <-- modulation unit (FM)

ENVMODULATION3S(0,.5,1,.7,.2,.8)\
MODULATOR1(3,note,1.7,1\

<-- modulation envelope
<-- modulation unit (FM)

ENVAMPLITUDE3S(.3,1,.8,1)\ <-- amplitude envelope
CARRIER i (intensity,note, 1)\ <-- carrier (FM)
POSITION(3,5) <-- audio output

The definition of the instrument FMPAIR tells us that it is not affected by global control of the amplitude,
nor uses tremolo, vibrato or pitch envelope units. Nevertheless, all these features must be declared and its place
held by ad hoc modules (NO-modules).

Other modules show us that the instrument is an FM pair. The MODULATORI has a modulation index of
3, and a frequency relation of 1.7 with the carrier. The waveshape of both operators is a sine, set by the value 1
as their last parameters. ENVMODULATION3S and ENVAMPLITUDE3S are the envelope generators for
modulator and carrier. They both have three segments of straight-line transitions (that is the meaning of the 3S).
The first and last values for the modulation envelope are its relative levels at the beginning and at the end of
sound; amplitude envelopes begins and ends in zero (for what it is not explicitly said, and they have fewer
arguments).

POSITION is an output module that uses the cmusic SPACE unit to spatialize the sound as it were coming
from a fixed source.

The values for beginning, duration, intensity and note remain undefined, and are later controlled note by note
from the score:

FMPAIR(0,4,-16dB,C(1))
FMPAIR(4,2,-12dB,A(0))

All crusic pre and post operators can be used with the system (Moore,1990).
It's important to notice the usage of the NOMODULATORI module. It says that there is no previous
modulation unit affecting the MODULATORI (so the instrument is only an FM pair).

Another more complex example:
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MORECOMPLEXFM(beginning,intensity,note,veltremolo)\ <-- header
WHEN(beginning,4)\ <-- action time
NOGLOBALAMP\ <-- global control of amplitude
NOVIBRATO\ <-- vibrato unit
NOMODULATOR I\ <-- modulation unit (FM)
ENVPITCH2C(-20Hz,4,.5,0Hz,-5,5Hz)\ <-- pitch envelope
TREMOLO(veltremolo,8)\ <-- tremolo unit

ENVMODULATION2S(.9,.5,.2,.8\ <-- modulation envelope
MODULATORI1(1.5,no0te,.73,1\ <-- modulation unit (FM)
NOTREMOLO\ <-- tremolo unit
ENVMODULATION3S(.2,.4,1,.6,.3,.6)\ <-- modulation envelope
MODULATORI1(3,note, 1.7, 1)\ <-- modulation unit (FM)

ENVAMPLITUDE3S(.3,1,.4,.30\ <-- amplitude envelope
CARRIER I (intensity,note, | \ <-- carrier (FM)
MONO <-- audio output

The instrument MORECOMPLEXFM uses cascade FM synthesis. The output of the module
MODULATORL is taken to feed it again, as the module is invoked twice. It is important to notice that in spite
of the fact that the module is the same, its parameters are different, and so are the modulation envelopes that
affect it.

Other important feature of the system is shown by the usage of pitch and amplitude modifiers.
ENVPITCH2C (pitch envelope generator of two curved segments) affects the two modulators and the carrier.
TREMOLO (a very simple unit for amplitude modulation) affects only the first modulator, because its action is
turned off by NOTREMOLO before the appearance of the second modulator and the carrier.

How it works

The central concept of AMI is the idea of small, incomplete instruments, whose outputs are blocks going
nowhere. The values passed to those blocks are taken by the following partial instruments, which have open
inputs coming from nowhere. After processing the data, the output is again "hanged in the air” and taken by the
next operator, and so on untill the last module of the instrument.

Playing a note in an instrument designed with AMI means to play a chord with all the modules that
compound it, but only the one with the audio output actually “sounds”.

The whole system relies on the coherence of naming the input-output blocks. To prevent the unwanted
appearance of remaining data in a block (that could be left by other instrument playing at the same time), I
introduced the NO-modules. Their sole mission is to clear a particular block, to be sure that its value is neutral
to the processing.

Elements of the system
The modules are macros that play a note in one of the incomplete instruments mentioned above, which

themselves are defined using cmusic syntax.
The following two examples will enlighten the subject:

Example 1
ins O carrierl ;
adn b22 p6 b3 b5 b6 ;
adn b23 b2 b4 ;

muit b21 p5 b23 b27 ;
osc bl b21 b22p7d;
end;
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#define CARRIER I (intensity,note,waveshape)\
note p2 carrierl p4 intensity note waveshape ;

The macro CARRIER1 invokes the instrument carrierl, and plays a note in it at the moment beginning
(parameter 2), lasting for duration (parameter 4). These two parameters are supposed to be set by the macro
WHEN (that's why it must appear as the first module in the definition of the patch).

Example 2

ins O nil4;
adn b4 0;
end ;

#define NOTREMOLO\
note p2 nil4 p4 ;

The nil4 instrument cleans the block 4, by feeding an additive operator with a zero. Then it is invoked by
the macro NOTREMOLO to play a note.

Structure of modules used in the MORECOMPLEXFM instrument are displayed in the figure. The
TREMOLO unit is not analyzed here because it itself is composed by modules, and its complete discussion lies
beyond the scope of the present paper.

Further developments

The system could easily be expanded to follow everyone's particular needs. As it is made exclusively of
cmusic operators, it is possible for users to add their own modules. The only need is to preserve the coherence in
naming the input-output blocks, as it was done among the existing modules.

There is also a project for developing a graphic interface for the system, that could result in a significant
improvement.

Conclusions

AMI for cmusic allows a comfortable approach to software synthesis, that makes it useful for educational
purposes, as well as for composition. The system is easy to deal with for musicians experienced in hardware
synthesizers, since its modules remind the operators of such devices.

The primary concern of the system is friendliness and clarity, rather than computational efficiency. I consider
that for anybody at the first stages of contact with computer music languages, the waste of time in debugging is
much more important that the one in compiling.
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Abstract

Many existing fundamental frequency recognition (FFR) algorithms return reli-
able results when the analysis window is sufficiently wide. In some applications,
however, the response time, i.e., the sum of the width of the analysis window and
the computation time for the FFR algorithm, must be made as short as possible.
This paper studies the effect of window width on the accuracy of two FFR algo-
rithms and describes a new algorithm with improved accuracy for narrow analysis
windows. The new algorithm uses dynamic programming to match harmonics to
peaks in the constant-@Q transform of the signal. A modification to another FFR
algorithm that enhances its performance in real time is also considered.

Introduction

A pitched musical sound is composed chiefly of harmonic components whose frequencies are integral
multiples of a fundamental frequency. The problem of fundamental frequency recognition (FFR) is
encountered in the automatic analysis of these signals, such as in pitch-to-MIDI systems that enable
acoustic instruments to be used as controllers of digital synthesizers.

FFR algorithms that operate in the frequency domain perform spectral analysis on the signal by seg-
ments and apply a pattern matching technique to the spectrum to determine each segment’s fundamental
frequency. Amuedo (1985), for example, identifies sinusoidal components in a signal by the peaks in the
power spectrum and examines how the hypothesis for each component to be the fundamental frequency
is reinforced by the other components. Pearson and Wilson (1990) consider a multiresolution approach
for the spectral analysis step. Doval and Rodet (1991a, 1991b) apply a maximum likelihood analysis to
determine the fundamental frequency also using peaks in the power spectrum. Brown (1992) computes
the cross-correlation of the constant-Q transform of a segment of the signal with a fixed comb pattern.
The calculation of the constant-Q transform and a fast algorithin for approximating it are considered in
(Brown 1991) and (Brown and Puckette 1992), respectively.

An alternative approach for designing FFR algorithms is based on computing an autocorrelation
between the waveform and a delayed version of itself and determining the fundamental frequency by
maximizing the degree of their similarity. Ney (1982) uses time-warping to account for small variations
in the signal waveform. The estimated period is the amount of shift that results in the best match of a
segment of the signal with a future segment. Lane (1990) adapts the center frequency of a bandpass filter
to match the fundamental frequency of the signal using a convergence algorithmn. Cook et al. (1993) use
a least mean square adaptive algorithm to determine the coefficients of a filter that predicts a segment
of a signal from an earlier segment. The phase of the filter is computed from these coefficients, which
is then used to estimate the period. Another technique, described in (Brown and Puckette 1993), first
determines a coarse estimate of the fundamental frequency using a frequency-domain algorithm. The
phase change of the component closest in frequency to the coarse estimate between two segments of the
signal separated by one sample is then used to estimate the fundamental frequency accurately.

Accuracy is an important measure of performance of an FFR algorithm. In applications where syn-
thesizers with continuous pitch are controlled, the resolution at which the FFR, algorithm can distinguish




