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Abstract

It is rather commonplace in everyday conversation to refer to the “Language of Music”,
However, we believe the whole apparatus already built for the analysis of natural language
has not been yet as thoroughly used for the analysis of musical phenomena as it could have
been. In this article we present some initial ideas towards extending the application of this
apparatus for the better understanding of “Music as Language”,

In this paper, we apply some techniques from Categorial Grammar to represent a simple
problem of music theory, which we believe nevertheless to be of widespread interest: func-
tional harmonic analysis, We propose an encoding of the harmonic functions of chords as
syntactic categories, and show how the generation of proofs of “harmonic well-formedness”®
of cadences can be implemented and used as a tool to verify and to display the functional
harmonic structuring of cadences. :

Keywords: music analysis, harmonic analysis, categorial grammar, syntactic calculus,
substructural logics.

1 Introduction

It is commonplace in everyday conversation to refer to the “‘Language of Music”. Indeed, the
study of musical phenomena as linguistic objects has been developed by many authors (see e.g.
[BCe84, Hol80, LJ83, Sch89]). In this article we present some initial ideas towards extending
the application of this apparatus for the better understanding of “Music as Language”. More
specifically, we employ techniques from Categorial Grammar to represent a rather specific and
simple problem of music theory, which we believe nevertheless to be of widespread interest:
functional harmonic analysis [Bri79].

The aim of Categorial Grammar [Ben87, Ben0, Ben91, Lamb58, Lam89] is the analysis
of syntactic well-formedness of sentences. The fundamenta)l concept underlying Categorial
Grammar is that of syntactic categories, which are classes to which words in a sentence must
belong. Syntactic categories can be organised as formulae of some substructural logic - e.g. the
so-called Lambek Calculus [Lam58] - in such way that syntactic well-formedness can be checked
via an appropriate proof theory related to the logic.

In this paper we propose an encoding of the harmonic functions of chords as syntactic cat-
egories and show how the generation of proofs of “harmonic well-foundedness” of cadences can
be implemented and used as a tool to verify and to display the functional harmonic structuring
of cadences.

In section 2 we briefly review the concepts of Lambek Caleulus that we need to use in the
rest of the paper. In section 3 we introduce our encoding of harmonic functions of chords as
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Figure 1: Deduction for “John likes fresh milk”
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3 Tonal Chords and Syntactic Categories
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corresponding to an intermediate concept leading to the idea of subdominant. Intuitively, we
have a as tonic, a\ b as subdominant (fulfilled when preceded by something of category a) and
b\ ¢/a as a full cadence (fulfilled when preceded by some chain of chords of category b and
followed by something of category a). In order to present our proposed encoding of chords as
representatives of syntactic categories, we must introduce some notation.

We have adopted the (first twelve) MIDI codes for pitch values, and hence the notes C,
Cj, D ... are denoted respectively as 0,1,2,.... The syntactic categories of the functions of
chords can then be encoded in a dictionary like the one presented in table 1. In this dictionary,
i=0,1,..,11, and these numbers are operated modulo 12,ie. 64+5=11,6+6=0,6+7=1
etc. (and, of course, in table 1 we have only a small fragment of one such dictionary).

Major Mode
tonality
entry | chord ¢ ] ol [ 3] &5 [ #7 [ #8 [ 410
T [ b\e/a | a\b
@ | {3, a\b
++10
73 | i, Refa
10
T i, || @ ap
11
© | e, e
1142
i | 438 Befa | d\b a
Minor Mode
tonality
entry | chord A [ [ o5 [T [ &9
it | AT b\
B i, Ba
10
T [l a a\b
7 i3S B
| 49 a\b a

Table 1: Dictionary of Syntactic Categories of Chords (i = 1,..., 11 is the root of the chord)

It should be observed that syntactic categories refer to specific tonalities and modes. We
avoid referring explicitly to tonalities and to modes in our deduction trees to preserve our
notation as simple as possible. Now, using the notation of table 1, if we attach the perfect major

triads 0,5, 7! as labels to the categories a, a\b and B\¢/a, we can derive the well-formedness of
the perfect cadence {0%,5%,7%,0'} (figure 2).

0'5': bk 0'51 b 015170 : c - 01517101 . ¢
0':ab0':a 05 :4, 700! : Bk 01517201 : ¢
0% :a,5':a\p, 770" : B\c - 01517101 : ¢ 0':aF0':a
0% :a,5!:a\p, 7" : B\¢/a, 0% : a - 01517107 : ¢

Figure 2: Deduction for the perfect cadence
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Figure 3: Using the Theorem Prover

A theorem prover for this Calculus can be implemented in PROLOG, and in the following
section we present a very simple implementation for it.

4 Functional Harmony in PROLOG

The PROLOG code for a simple implementation of a theorem prover for the Calculus presented
above is introduced in the appendix following this paper. This program works as follows: given
a sequence of chords [Ci,...,Cn), the procedure genseq converts this sequence into a sequence of
sets of harmonic functions F; that each chord C; can have. From these, the procedure cadence
selects the functions fi € Fi such that from f; :¢=1,...,n we can derive the function ¢ of any
tone and mode. These functions are then presented as solutions, with the corresponding tone
and mode of the derived cadence.

For example, if we want to check the well-formedness of the sequence of chords in figure
2, we obtain the following (figure 3). This output indicates that, for the fragment of tonal
functional harmony encoded above, the only syntactic category of type “¢” that can be derived
from the given sequence of chords is that of C major.

5 Conclusions and Future Work

In this paper we presented an encoding of the harmonic functions of chords as syntactic cat-
egories, and showed how the generation of proofs of “harmonic well-foundedness” of cadences
could be used as a tool to verify and to display the harmonic functional structuring of cadences.
We have also presented an implementation of a theorem prover for automating this verification.

Clearly, there is still much to be done on turning Categorial Grammar applied to functional
harmonic analysis a more friendly tool for musicians. Nonetheless, our initial experiments
suggest that this can be a useful tool, not only for analysis but also for generation of cadences
upon certain constraints, e.g. when building accompaniments for given melodies.

Immediate future work shall include the study of applicability of this tool in practical situ-
ations of interest for musicians and for students of music, and the extension of our “dictionary”
to encompass richer harmonic cadences. It shall also be interesting to further analyse the math-
ematical properties of tonal harmony under the viewpoint of Lambek Calculus, and to study
what the (musical) consequences could be of altering some of these mathematical properties
(e.g. by adding some structural rules or different connectives to the Calculus).

The program presented here is also available by ftp at
f£tp.ime .usp.br'./pub/music/ Jambek, or directly from the authors.
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Appendix: A Theorem Prover for Functions of Chords

Viiad wk/
/* narmon(L, A) - the collection of harmonic justifications for */
/% sequence of chords L is A */

* .y

fann

.- miditransl(L, Ln), genseq(Ln, F),

harmon(L, &)
midiback(An, A).

setof ([X,Y1, cadence(F, X, Y), An),
miditransl([ﬁl'l‘], [HnlTnl) - granschord(H, En), miditransl(T, Tn).
miditransi(ll, . :
transchord([HlT]. [EniTnl) i~ transnote(H, Hn), transchord(T, Tn).
granschord([1, [1).

transnote(c, 0). transnote(c_sharp, 1). transnote(d._flat, 1).

transnote(d, 2). transnote(d_sharp, 3). transnote(e_flat, 3).

transnote(e, 4)-
gransnote(f, ). transnote(f_sharp, 6). transnote(g.flat, 6).

transnote(g_sharp, 8). transnote(a_flat, 8).

transnote(g, 7)-
10) _transnote(b_flat, 10).

transnote(a, 9). transnote(a_sharp,
transnote(b, 11).

midiback([BIT], [En|Tnl) :- noteback(H, Hn), midiback(T, Tn).

midivack([1, [1).

noteback([1, MI, [c_sharp._d_flat, ).

noteback(L0, M1, [c, ¥DD.
[d_sharp.e_flat, M.

noteback([2, K1, L4, ¥ noteback([3, M1,

noteback([4, ¥J, fe, M1).
noteback([5, K1, [£, M. noteback([6, Ml, [£_sharp._g.flat, ¥1).

noteback([7, X1, [g, M1). noteback([8, M1, [g_sharp_a_tlat, M) .
noteback([9, K1, [a, M1). noteback([10, wl, [a_sharp_b_flat, ¥l .

noteback([11, M1, [o, ¥1).

/** oy
/* genseq(s, 1) - the collection of candidate sequences of */
/* harmonic fumctions for S is L */
/** * *k/

genseq(S, 1) :- genfunct(S, F), remap(F, L).

genf\mct([ﬂl'l‘], L) - ganf\mct(T, 12), setof(F, function(®, F), s),
append([s], T2, L).

gentunct([1, .

f\mction([HlT], [y, Fun, Modl) :- funct(Lf, [2, Fun, Modl),
match(H, [HIT], Lf), Y is ({2 + H) mod 12).
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/% funct(H - dicti
) ct (HO, FO) dictionary of harmonic functions *;
/

funct ([0,4,7], [0, [a], majl
e [a,e,b]? i;j;!\)mct(foﬁl,ﬂ. [6, [b,e,c,d,al, majl).
func?([0,3,7,10], [10, [a,e,b], me;j])
:§°§§Eg’4’7’1°]’ [5, [v,e,c,d,al maj])
c ,4,7,111, [0, [al, 7). '
funct([0,4,7,11,2], [0, [a]l?aig]-)funCt(EOAJ’HJ, e fare,bl mail-
:ECIEESJ,S], [1, [b,e,c,d,a] maJ-'])
ct([0,3,81, [3, [a,e,b], majl). Zun
(o el T Doee i ynen (L2810, 8, 181, mag)-
:3;::&8,4,7,10], [5, [b,e,c,d,al mix.\])
ct([0,3,71, [0, [al, minl). fun ;
:ECEEEO'HJ' {1, Eb,e,c,g,:d, ;xixz§§[0,3,7], et e8], mial)-
ct([0,4,9]1, [4, [a,e,b], minl). funct([0,4,9], [9, [al, min])

/

/

match(X, [H1)jT1], [H2{T2 - i
maentn, DT 1) :- Hi is ((X + H2) mod 12), match(X, T1, T2)

remap([H|T], L) :- remap(T i
remap([T], L) :~ combi:le)ET: IE:E:)Ij,Czl;‘.)lne(H’ D

combine([H|T], L ) -
» : i
2 1 : L2) ‘ combine(T, L1, T2), comb(H, Li, H2),
combine([1, .., [1).

comb(A, [H1]T1], [H2IT2]) :-
o at 1) :- comb(A, T1, T2), append([A], H1, H2).

append([HIT], L1, [HIT2]) :-
e o 1) :- append(T, L1, T2).
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*/
*/

* cadence( [} O - - Mod
/ d Mod L forms a cadence of Ton

Ton, )
/ »

/*

- theor(d, [X, [cl, Y1).

¥) ¢
cadence([H1_1, X, ) T celT, £, 1)

cadence([_1T3, X, Y) ¢

Yl),
theor([EIT], X, F, Y]) :- theor](';‘, [x, L, Y1)
. prove(H, [x, L, Y1, X, F, Y1).
theor(L[X, F, Y11, X, F, Y1),

Yl) :-
FiT2l, Y1, IX, L2, . .
Wy Y]D:-‘ D;ITE]). invert(Ti, Tii), apg;nd(’l‘ll, T2, L2)
' v, X, L2, Y1) :-
X, O ; ' ap{)end(Tii, T2, L2).

prove(f
invert (L1,

(fx, L1, Y1, . '
prov:nvert(Ll, [FIT1]), invert(T1, Tii),

i i , L).
invert([HITI, L) :- invert(T, Ti), append(Ti, ["l

jnvert([1, [1). »

/

Figure 4: A Theorem Prover for Functions of Chords
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Abstract

This paper analyses the application of a new reconstruction method for digital
audio signals. The method is called Normalized Sampled Finite Sync
Reconstructor (NSFSR) and its behavior is closer to the ideal reconstructor used
in the original sampling theorem. When compared to the reconstruction method
currently used, the Zero Order Reconstructor (ZOR), it substantially reduces
storage size, transmission bandwidth and synthesis time. Both qualitative and
quantitative analysis of the methods are presented,

Introduction

This paper analyses the application of a new method of digital audio signal reconstruction. The
goal is to reduce the storage size and consequently the transmission bandwidth the synthesis time, The
reconstruction method was designed with the intent of surpassing the quality of the popular Zero Order
Reconstructor (ZOR), which produces jag effects in one dimensional signals [Martins, 1994].

Digital audio signals are currently used in many computer applications, including entertainment
and telecommunications. In addition our research is-important for future applications such as computer
music, virtual reality, distributed multimedia, scientific visualization and digital television, among others.

Most existing signals of importance to the humans, such as audio or static and dynamic images,
may be considered analog at the macroscopic level. Nonetheless, for these signals to be manipulated and
processed by digital computers, they need to be transformed into digital signals through sampling,
quantizing and codification. Since our final objective is the display of the analog signal, after all the digital
signal processing the data must be converted back to the analog domain,

According to the sampling theorem [Shannon, 1949], the minimum sampling frequency must be
twice the frequency of the highest component in the analog signal. However it is common practice to use
sampling frequencies well above this minimum. Reconstructors often fail to meet theoretical performance
levels, and higher sample rates simplify the design of the analog lowpass filter used after digital to analog
conversion.

Currently almost all systems that work with digital signals use digital to analog converters
(reconstructors) connected to the output devices, that can be modeled as a zero order reconstuctor (ZOR).
Since this is not the ideal reconstructor used in the sampling theorem, errors occur in the reconstruction,

Our main objective is to show it is possible to use sampling frequencies closer to the minimum
and obtain better results than by employing the ZOR, using the NSESR.

We must remember that audio signals are a subclass of the one dimensional signals which present
unique features related to human perception. What is an essential characteristic of audio signals is not
essential in other one dimensional signals. In this paper we will focus more on the general characteristics of
one dimensional signals which are also valid for audio signals, such as storage size requirements, bandwidth
for transmission and the quality of the generated signal.




