198 XV Congresso da Sociedade Brasileira de Computagdo

ultiresolution Analysis and Synthesis Technique for Sound Timbres

Wavelets as a M
Edition

REGIS ROSSI ALVES FARIA
Computer Music Group
LSI - Laboratério de Sistemas Integraveis
Escola Politécnica da Universidade de Sdo Paulo
(regis@lsi .usp.br)
JOAO ANTONIO ZUFFO
LSI - Laboratério de Sistemas Integraveis
Escola Politécnica da Universidade de SdoPaulo
(jazuffollsi. usp.br)
Av. Prafessor Luciano Gualberto, 158, Tv.3
05508-900 Sdo Paulo - SP Brasil

Abstract

pureness still stands an appreciable distance
ahead of the artificial instruments’ one, as synthesizers, in timbre quality as much
as in the virtually infinite variability and modulation possibilities.

Analysis and synthesis techniques have been employed for years as a tool to analyse
timbres’ temporal-spectral characteristics, and re-synthesize them from these

extracted parameters.

In this paper we show the uti
signal processing with additio!
as a technique for sound anal
scheme. The central idea is to exp.
fine timbre components in the time:
improved timbres.

Real acoustic instruments’ sound

lization of Wavelets - a mathematical tool employed in
pal advantages over the classic Fourier transforms -
ysis, edition and synthesis under a multiresolution
lore the capacities of this technique in altering
-frequency (scale) spaces, in order to produce

Introduction

Several analysis/synthesis techniques for signal processing hi
field of music. Successive development of computational resources
growing interdisciplinary interaction with other knowledge branches (
others) propitiate the emergency of efficient and sophisticated techniques to proces
including musical ones. We introduce wavelets as one these emergent tools, comi

several mathematical branches and engineering and computational techniques.
So far the realism and sound pureness produced with real-world musical instruments have not

surpassed: the infinite number of physical parameters, and also the musicians’ psychological impressions;
the musical experience into a complex phenomenon, hard to be efficiently modeled in co
One way towards the enrichment of music representation on computers is the processing of the mu
signals in both time and frequency domains in order to work out instruments’ timbres -
acoustical or not. Acoustic instruments have complex tones. The spectral evolution in an at
different evolution in time of the various harmonics. Even at the “steady-stat
micromodulations and other variations that are perceptibie.

decrease uniformly: each frequency component reveals a di
imposes several modulations to the sound. His or her style and mood ar
and different intensities during performance. Add to this the influence of local acoustics, giving bi
tike reverberation, etc. The final sound is a signal full of details hidden in its time evolution.

both in hardware and software- adding |

ferent collapse in time. Th

ave been employed through years now int

as applied mathematics, biology a
s several types of sigt
ng from the marriage

mputer applications.

whether they
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& the tone undergoes. M
harmonics do

¢ translated into complex modulat
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One can easily sense lar, iati ini i
ge variations in intensity and re i j i

‘ ¢ cognize major h
imbres, sense some vibr: IO Duiches. One '
tn o donal context ‘%’lvt}(l)s and olber effects. However, a human listener often interprets t;in o rCCOgmge
a i o Xt where feelings are translated into a great spectral ity in time, og. fine
modu ahxons and “micro-structures” mixed inside the signal i variabiiy i time, eg, fine
1t happens that th i insi i
o e I;I?eas o largziesgsltalls'are present inside the signal at several different scales. As in

| areas & ales, and details at smaller scales. It is desirable an unb . . map,  Senal
edmephsy ,lw }ere changes can be made over the signal at different scales unbounded resolution sigral

e wavelet framework is adequate for thi I
' } r this purpose. We shy
e on s ewo ( . . show how wavelets i
mult signal edition system, dealing with the signal at different scal din o used_to e o
" scales, and in an efficient and concise

Wavelets

The application of wavelets to si i
. signal processing is onl
¢ v I ! y a few yea i
representmg generic functions in terms of basic building blocks. This i y“ " O'l'd o thegry Y e o
o anstorm. . is an “atomic decomposition” algorithm
Looking back over the histo |
’ : ry we find seven different origi
over different scal : ; origins of wavelets: the i i i
et Moejeiair:; ol(xip m‘ciiepende?tly in many fields of physics, mathematics ar‘xjc?ae:;irt;zzu'smg Ia oot
7 uced an unified framework, givi irth t et Mot
e : ; , giving birth to the first iti ¢
2ggstmc¥ienrg E\ly:ggllrrmulaled the multiresolution analysis, a natural frame(ijgrrl?nfon Ofawavelet'. s
: ases. From then on the number of contributions and icati ! }lnderstandlng -
ubstantially. nd applications of this theory has grown
ourier techniques are an ideal tool fi i i
ouri . or studying stationary si i
o oo wi ( for . fonary signals, decomposing them i i inati
;transiims et Othe;lv:;n(s;?eedsi,czl%sllnes). Musical signals may be classified ags nonst;?;gr:;[;;a;i;lmlbmatlllons
1 ‘ ' table events might happen, and the w i ol tool for
% 1 i ; a i
studying such signals, decomposing them into linear combinations of wa://ee}:z technidues are an ideal too for

Wavelet Representation

Wavelets consist in a family of basi i
- ' y of basis functions y;; , in L? i i
ations (scaling) and translations (shifts). e (1) obiained from  single motherrwavelet y by
Vi = 2 il2 2 2
ik w(2/t-k) ,wherejkez.
There are infinite possible families li
amilies like this, and the useful
3 ness of them is linked to some desi
esirable

! properties they must c
. possess. The mother wavelet y st i i
: e . 1 w should verify some import ies: i
p! ecreases to zero and has integral zero. Also, it should verify the adfnis:igzlir:;ogsx:gietsi;) be(Ca )k:)calhzed
' n (C,) below:
_ 2 -1 T
C,=[lw@) lf de<o ana [w().dr=0
0
‘ ~0Q
,\vher; IY’ (&) is the Fourier transform of y.
he family {;, } above is an orth i
. : ; onormal basis of L*(R), That i : =
every function /) € L*(R) can be written as (0, Thatis <t Vo> =B Bun GLlmez) and

t:

5

f= Z;d,,k o) )

J

iere the wavelet coefficients dj; are given by
dy=<fhy,  ()> (A)
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We are interested in wavelet functions whose binary dilations and dyadic translations are sufficient to
represent all functions f{) in L3(r). Observe that the family { . } covers infinite scales a=27, and performs g
frequency band analysis when generating the wavelet coefficients. We have frequencies separated in
consecutive octaves (2)), a natural scaling factor in music.

view, V,® W,

= Vjuy . The new family of
vie i y of subspaces are the orthogonal complement of Vjer in V. It follows

Vi, =W, , ,
=W, OW, ®@W,@ ... or Vi =W, @ W, ®W.,® ..®V,, which implies that

Wavelet Transform Eur() = A+ AL, + ..+ A + Afy + £,

Unlike Fourier analysis, the integral form of the wavelet transform is intimately related to the wavelet
series representation: the coefficients dix of f{t) are precisely the values evaluated by the integral wavelet
transform (not shown) at the dyadic positions in the binary dilated scales. The wavelet representation
simultaneously localizes fand its Fourier transform with the multiscale analysis capability. Since there are real
time algorithms for calculating the coefficient sequences and for recovering f from. these sequences, we will ‘
center our attention in the discrete signal analysis and synthesis through discrete wavelet transforms.

The formulas in equations (S) and (A) are a simplified form of the synthesis and analysis processes,:
respectively.

. vi{:;;x;ally,llt follows tha~t the union of all subspaces W, is also the whole space L*(R), and the requirement;
al 2‘ z;tppy' to the family of (closed) subspaces W;. The family of functions { kez} constitut X
orthonormal basis for W; . More: The whole collection {wj ,J.keZ} constitutes arj{ o;thonormal basiess ;:)“

r

L’(r), which is called a wavelet basis of LYR), with w;, (f) = 272 (>
1) (R), with w;, () =2"° Y2/t - k) (to maintain the coherence with

The structure that connects the subspaces V; to W; is a pyramid, as below:

Timbres Edition

An unbounded resolution signal edition system should support:

« an efficient representation of the signal at different scales. It should be possible to “see” details at
different scales. ‘ :
o operation on the signal at different scales. It should be possible to process the signal sequence (at scale
a) with known processing methods -as Jiltering, modulation, addition and subtraction of other signa,
sequences, applying envelopes, elc.
« propagation of changes. Changes fo the signal on a level (scale) must propagate 1o other levels, in
non-redundant manner, and without loss of information. In other words, levels must be connected.

€ 0eg S S u T wavelets ar for the whole Space L5(Rr), but the
We begin our calculation at some unit scale. The v avelets are a basis ,
scalmg function ¢ at j—() and the wavelets with j>_0 are a more ( )

decomposed into a set of subspaces V; and W;: practical basis. We can recover a /),

FO) =1+ _;)Af,- = +Z°°Afj = fdf,k‘/’j,k

where djk are the wavelet coefficients of 1. From A% W
o . 1 )
¢ ical " id f( ) /b() (1 1 Vo) and we extract the other j;(t) from

: : p at some scale, say 2” (level J, where li i

;;?:ﬁ?d?lizcgrrer?;l:r}cxesf components (finer) to reproduce an exact signal. In lhg oppo;ite d?lr'zcltlif;fzgc))v?mv?hm
N sing f, into successive coa i i i ;

Havm sl rser aproximations, we obtain less resolved descriptions of /1), at

A multiresolution analysis (and synthesis) approach is the choice for implementing the above processin
structure. In the next session, we introduce the concepts of a multiresolution analysis framework, and i
properties. It is presented the pyramidal algorithm, and its implementation with filter banks. Thus a natura
connection between filter trees in discrete time and the multiresolution in continuous time is made, showin, .

that filter trees can implement multiresolution analysis. Finally, it is shown how filter trees lead to wavelets.

The Wavelet decompositio i §
Multiresolation Analyss p n and reconstruction algorithms
We i i i

aproximatieoe: (t)? ;(?vet: our signal f{t) described at different scales. It is desirable the ability to go from a ¢

2o pectorm o ratfo I:)ward}s1 a ﬁner one, where more details are available (better resolution), and vice-v(:;rsze

accomplish thé):e s on the sngrllal at chosen s_cales. The multiresolution framework offers th; environment t )
operations. In this scheme, projections of /{t) into subspaces V; and W are related by: °

/] :

A multiresolution analysis consists of a sequence of successive approximation (closed) spaces V. Eac]
subspace V; is contained in the next subspace V;.;. A function in one subspace is in all higher (finer) subspace:

. V,cV,cV,c..cV;cVu,c ..

i =/ +gu, andby iteratati -
A function f{t) decomposed into these spaces has a piece in each subspace. The piece (projection of /1) ) gn y lteratation follows that f; =gy +gia + ... + gt/

V; is called fi(t). The union of all subspaces is L%(R), and the intersections between subspaces is a null spa
(ﬂVJ = {0} ). There are additional requirements:
Jje

There is a intimate relati
o ion between ¢(1) and ¢(2t-k) and between y and #(2t-k) known as the two-scales

o Completeness: f{(t) > f{t) asj —>© , and Emptiness: }§ () || > 0 asj—> -

e V;,; consists of all rescaled functions inV; fi) e V; = f12) € Vju

o Shift invariance: fit) € V;=> fit - 2%.k) € V;

« There exist a basis for each subspace V. {#,x , ke} is an orthonormal basis for V;, j€Z.

¢: Zhn¢l,n and ¥ = Zgn‘//l,n

since i
# €VocV; and y eW,cV,. From these relations we derive the decomposition formulas:

We call ¢ the “scaling function” of the multiresolution analysis.
The function £.,(f) in Vs, has a better resolution than f; in V, The missing portion necessary.
aproximate £, /(t) from f; is in a new subspace W Af; = f.,(t) - 1, where Af;eW; . From the subspace pot

Cie =<JS.0, 1 >=2 A -
J-Lk SV i-Lk —2%C; and d; -
! ; noRk J-Lk <f»‘//j—4,k >= Zgn-zkd-
n
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We can define now f; and g as fj = ch,kgﬁj,k and g = Zdj WV 1t is clear that CjzeV; and
k k ’ ’

d.eW;. Since /i = fi1 t gj1, the reconstruction algorithm is
Cre = Z[hk-2ncjm +8r2nd,]
n

This is wavelet decomposition and reconstruction, which can be schematize in a analogous pyramid
algorithm:

diy dia o di dry dy d
o N N A N+1 )-1
Cj —*Cpyp —»Ci2 —>+ —»CuN \ \ \ \

CIN — Crysp —> - —» Cpp —» O
decomposition reconstruction
1t is the recursive nature of wavelets algorithms that make them computationally fast and efficient.

Filter banks implementation

A multiresolution pyramid analysis can be implemented with filter banks, structured in a trec format, as
below:

H is a low-pass filter, which computes averages. G is a high-pass filter, which computes differences. The
downsampling steps (32) get even numbered components from the input sequence. The averages and
downsampling go on indefinitely, each step taking us from a finer level to a coarser one (as in the
multiresolution step from V; to V;.4). In real computations we can start from a fine scale 27 at level J and go
down the tree towards level j=0, which, for example, can be normalized with 4r=1. If the input vector x(n) has
lenght N=2’, we reach level j=/ with 2 inputs, almost the coarsest level. In the filter tree, the input sequence
x(n) corresponds to the coefficients of ¢y

In practice, we can assume the values of signal sequence f{n) as the coefficients ¢;y (actually f5), and the
analysis will provide the next level coefficients ¢, and dj,.. This last contains the details of f{n) separated into
band-frequencies. In the synthesis, we invert the processing direction, as in continuous multiresolution
synthesis, the only difference being in executing an upsampling (12) instead of a downsampling from a level to
another.

The operations in a filter tree, as above, can be conveniently implemented through matrices
multiplications. To transform N-lenght input sequence to its N coefficients (generated in the decomposition) it is
necessary a NxN matrix. It is like solving a linear system. The inverse transform operations (the synthesis)
involves the inverse matrix:

Synthesis: x =W.b Analysis: b=W'x
where b is the vector of the N coefficients, W is the wavelets matrices obtained from the filter banks
coefficients, and x is the input vector (signal sequence).

The choice of the high-pass and low-pass filters will exert a strong influence on the properties verified by
these matrices. For example, if we have an orthogonal filter bank (with orthogonal H and G) the correspondent
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(filter bank) matrix will be orthogonal. By means of a proper normalization, the orthogonality turns into
orthonormality, and, thus, WT.W =1 = W =W. This turns the transform into a fast transform, because
these matrices can be factorized into 2 or 3 matrices, with many zeros entries, and the number of numerical
operations can be dramatically reduced. Actually, it can be proved that the number of multiplications for the
fast wavelet transform is bounded to less than 2.T.N, where T is the number of the filter coefficients. In other
words, the algorithmic complexity is O(N).
Now, let’s show the bridge that leads filter trees to wavelets-based multiresolution schemes.

There are many parallels between a filter tree in discrete time and a pyramidal multiresolution in
continuous time:

Filter banks (discrete time) Wavelet multiresolution scheme (continuous time)
filter bank tree multiresolution pyramidal structure
downsampling (v(n)=y(2n), @ —> %) rescaling t—» 2t
lowpass filter averaging with g@t)
highpass filter detailing with y(t)
orthogonal matrices orthogonal basis
analysis bank output wavelet coefficients
synthesis bank output sum of wavelet matrices
product of filter matrices fast wavelet transform

The construction of a wavelet basis was connected previously to the existence of a scaling function ¢. It is
now appropriate to show the connection between the low-pass filter choice and the scaling function.

Dilation and wavelet equations

The low-pass filter coefficients ¢;; (n) are the link that leads to wavelets. The operation {H({2)} in the
pyramid algorithm might be, in theory, executed indefinitely. It consists of a recursive operation. Suppose that
4.k is one basis at level j in the filter banks. At level j-1 the basis is ¢j-1,k, as if it was computed by a
filtering/downsampling operation. It is a two-scale relation, required for multiresolution analysis:

$U (1) = S h()p? (2t - k)
k

where (i+1) and (i) indicates a recursive calculus. This is called the cascade algorithm. If those functions &
converge as i — oo take the limit of the iteration, which is the dilation equation:

¢(0) = 2 h(k)p(2t k)
k

This, in multiresolution language, means that the space Vj, is contained in V. The wavelet subspace W, is
also in Vi, and there exist a similar relation connecting w(t) and ¢(2t-k), but this time through the high-pass
filter portion, i.e. the second channel in the filter bank. This is called the wavelet equation:

w(t)y=3 gk)yp2t - k)
k

This is how filter banks leads to wavelets representation. The trick in constructing a wavelet-basis is in the
choice of the filters. Not all filters leads to wavelets. The filter must verify some important properties in order to
be useful. The orthogonality theorem says that if the cascade algorithm converges, and if the coefficients c¢(k)
and k(k) come from an orthogonal filter bank, then they lead to an orthonormal basis ¢ ;; and an orthonormal
wavelets basis y;(t). Generally, if H(o=n) = 0, there is convergence of s ) to 4 1), and when [H[ is halfband
the ¢ (#) is orthogonal to its translates.
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There are numerous other conditions and special propeqies of some filters tlixat lead to specific wavelets
represematioris, but it is not our aim to go further in mathematical and.ﬁlter banks issues for the moment. )

One only has to keep in mind that we can construc.t v%favelfets using filter l?anks,.ax?d as we can conceive
infinite types of (qualified) filters, it is possible to obtain m.ﬁngte wavelets _basxs. This is one advantage over
Fourier techniques, which only take into account trigonometric sines and cosines.

- Conclusions

We think that a wavelet-based multiresolution analysis and synthesis envi'ronment is an efﬁci@t
framework to examine musical signals, inherently non-stationary, a.md possess_in,g finite energy. One att{actlve
is the possibility of extrapolating the higher resolution limit,‘creatmg a “dgtall’ at the top-most level (in W,)
and expanding to a new higher level. A modification in the signal at level j should affect only the elements in
W, since through the wavelet basis this change-will be propagated onwards. ) ) . 4

A detail in W; can be created by processing the sequence thfil re.presents.the signal in this Ievel. with
known signal processing techniques. Wavelets operations are feasnt.)le in real-time. Real-time sound signals
edition, however, is dependent on the efficiency of the editions operations itself. )

One important point to stand out is on the choice of the filter bank/wgvelet basis. Some wavelets are better
than others to treat a specific signal type. For example, an algorithm that is excellent for data compression can
be a disaster when applied for analysis. A large portion of the work lies in tllxe research of an optimal basis fgr
the type of signal that will be processed. Performances of different algorithms should be compared, as in
benchmark tests. . . L

In the case of speech and music, since quality judgments are greatly influenced by “human-factors”, it is
also advisable to take into account the opinion of musicians. o

Rather than proposing a final technique, this paper has shown the multiplicity of research routes and
alternatives in music synthesis utilizing wavelets techniques.
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Chaosynth

Um sistema que utiliza um autdmato celular para sintetizar particulas sénicas

: Eduardo Reck Miranda
Compositor, Mestre em Tecnologia Musical, Doutor em Misica & Inteligéncia Artificial
Rua da Repiblica, 541 Apt. 317, Porto Alegre - RS, Brasil
E-mail: miranda@music.ed.ac.uk

Resumo em inglés: In this paper I introduce Chaosynth, a new sound synthesis system which
uses a cellular automaton to produce sounds. Chaosynth functions by generating a large
amount of short sonic events, or particles, in order to form larger, complex sound events. The
synthesis technique of Chaosynth is inspired by granular synthesis. Most granular synthesis
techniques uses stochastic methods to control the formation of the sound events. Chaosynth,
however, uses a cellular automaton. I begin the paper by introducing the basics of granular
synthesis and explain the functioning of the Chaosynth technique. I then introduce the basics
of cellular automata and present ChaOs: the cellular automata used in Chaosynth. 1 also
explain how ChaOs controls the synthesis parameters and how I used parallel computing to
accelerate its performance. I conclude the paper with some final remarks and suggestions for
further developments. An early version in English of this paper can be found in Leonardo Vol.
28, No. 4 (Journal of the International Society for the Arts, Science and Technology, MIT
Press). A project report is available in the World Wide Web site of Edinburgh University:
http://www.music.ed.ac.uk/pgrecs/eduardo/chaosynth_report/epcc_project.html. Palavras
chaves: sintese sonora, autbmatos celulares e mdsica, modelagem simbélica de circuitos
neuronais, computaggo paralela.

A Sintese Sonora Granular e o sistema Chaosynth

A Sintese Sonora Granular (SSG) é uma técnica para sintese de eventos sonoros complexos. O
funcionamento da técnica SSG tem como principio a produgdo de milhares de mindsculos eventos
sonoros simples, ou particulas sonicas (por exemplo, particulas de 30 milisegundos cada), que ao todo
formam eventos sonoros complexos.

Esta técnica de sintese tem como base a teoria granular de representagdo sénica proposta na
década de 40 pelo fisico Dennis Garbor (1947). A teoria propde que os sons de morfologia complexa
sdo compostos por sequéncias de particulas sonicas menores ¢ mais simples (Figura 6). A teoria
granular de representagdo sonica teve muita repercussdo no meio cientifico; por exemplo, Nobert
Wiener, uma das maiores autoridades da teoria da informagdo, inspirou-se nas idéias de Dennis Garbor
para medir o grau de informagio de uma mensagem sonora (Wiener, 1964). O compositor lannis
Xenakis foi o primeiro a utilizar, na década de 60, uma teoria de representagdo granular para fins
musicais (Xenakis, 1971). Entretanto, foi somente na década de 80, com a popularizagdo dos
computadores de alto desempenho, que as teorias de Dennis Gabor e Iannis Xenakis tiveram a
oportunidade de serem postas em prdtica por compositores de um modo geral. Desde entdo, vérias
variantes da técnica SSG t€m sido propostas e utilizadas; veja por exemplo (Truax, 1988; Roads, 1991),

O ponto crucial para o bom desempenho de um sistema de SSG é o método utilizado para
controlar a produgfio das particulas sonicas; exemplos: o controle da quatidade de particulas por
segundo e o controle da duragdo de cada particula. A grande maioria dos sistemas de SSG utilizam
métodos estocdsticos (isto &, probabilisticos) para esse fim. Em Chaosynth eu proponho um método
diferente: 0 método proposto utiliza um autdmato celular chamado ChaOs (Miranda, Nelson & Smaill,
1992; Westhead, 1993).

Introdugio aes autdmatos celulares e seus principios “musicais”

Os autdmatos celulares sdo modelos matemdticos de sistemas dindmicos e néo-lineares, onde espago e
tempo sdo expressos por valores discretos ¢ finitos. Um autémato celular (AC) é geralmente
representado por um arranjo matemético (de 2 ou 3 dimensdes) de varidveis discretas chamadas
células. Os valores destas células definem o estado do AC. Estes valores mudam constantemente, em
sincronia com o pulso de um rel6gio imagindrio. A mudanga dos valores das células é controlada por
uma fungdo de transigo global (FTG), que determina o valor de uma célula em fungfio dos valores de




