Designing a Sound Object Library

Victor Lazzarini e Fernando Accorsi

The Sound Object Library is being designed to be employed by programmers
and composers to develop sound manipulation applications. Its classes
encapsulate all the processes involved in sound creation, manipulation and
storage. The library can be used as a framework or, alternatively, as a set of
objects to be patched together in a program. It is being developed to be portable
across the UNIX and Windows platforms. The library class hierarchy is founded
on three base classes, corresponding to sound processing objects, maths
function-tables and sound input/output objects. A number of classes have
already been implemented. A programming example shows one of the possible
applications of the library objects. A GUI interface for the objects is proposed,
_ using the V C++ framework.

Pagel

- - -k

BATA SECTION

{urrert time either

gy ¥ Nicleo de Misica Contemporinea
N Departamento de Arte / Departamento de Ciéncia da Computacio
g d84 & Universidade Estadual de Londrina
b - ,g =
sig 2l
g% gg E Abstract
B
g
E
2
8
g

o start of scome}

1 Introduction

PagtsL

The research described here derived from some ideas that evolved during the work on the
software Audio Workshop (Lazzarini, 1998). In that process, it was noted that the development of
a set of objects for audio signal processing could be very useful in the design of new programs. It
would help provide higher level tools for audio programming and software with a more intuitive
user interface. This set would be used in two ways: as finished objects, to be employed directly in
a program (or in a visual patching application), and as a framework, to which developers could add
their own specialized code. Consequently, programs to catry out specific tasks would be easily
developed by connecting the available objects and providing standard control-of-flow. Also, a text-
based sound compiler could be designed to make use of the library. Using derivation and
inheritance, new objects could be created from the existing ones, thus leaving the development
possibilities open. The creation of a Sound Object Library seemed a worthwhile, though complex,
task to pursue. '

The project took shape as some important premises were being defined. Firstly, the library
objects should encapsulate all the processes involved with production, manipulation and storage

Optimal
1wl
1to marey

SETUPSECTION

KEY
List

Bhoktiple opfiaal
lis‘!sa’c'ko.rﬂxi___'

+
!
i

Logical gtruciure of a NIFF file: " ing tee"

of audio data. Secondly, the user would have to be able to freely associate the objects, as if they
were- modules in an analog synthesizer, or opcodes in systems such as, Csound (Vercoe, 1992) and
Cmusic (Moore, 1990). Finally, the core of the code should be portable, allowing for machine-
dependent specialisations when necessary. This, together with other practical reasons, lead to the
choice of a portable high-level language such as, C++ (Stroustroup, 1991), with compilers available
for a great number of machines. The project has been implemented, initially, on two UNIX
platforms, Sun SparcServer and ULTRASparc under Solaris, and IBM RISC 2000 under AIX, as
well as on Pentium PCs under Windows 95 and Windows NT. Because of its availability across all
the target platforms, including the Windows operating systems, the chosen development
environment was that of the Gnu Project, including g++, gdb and the Emacs editor. In the
Windows platforms, MS Visual C++ was also used, since it compiles to an object code different
to that of the Cygnus Windows Gnu Project (cygwin) c++ compiler. The programs created with the
cygwin tools also require a special DLL to run, although their performance seems to be acceptable.
An alternative port of the gnu compiler for the win32 operating system was also used. It is provided
by the Minimalist Gnu Win32 (Mingwin32) tools, which do not require a runtime DLL and
therefore have a better performance. ’

2 The Sound Object Library hierarchy

The proposed hierarchy for the library is based on three abstract base classes: SndObj,
Table and SndIO. These form the base for three types of objects that integrate the set, respectively:
sound processing, maths function-table and sound input/output objects. A diagram showing the
inheritance relationships (Rumbaugh ef al, 1994) between the classes in the library is shown below:

, | _— I I] | I [| | I T
{"0scit_} [Buzz | [Ring_|[Delayline] [Mixer][Gain | Rand] [ADSR|[Unit_]: Filter ; [Sndin

N
[Goit] [Oaeii] [Covh] [(Mpsss] (Vo]
AN
[Pluck]

[| 1 I
UsrHarmTable || HarmTable || TrisegTable |[HammingTable

1 " I T 1
3 9 | I[snaatr1] [snaarrro]

96

The classes derived from SndObj are involved in the production and manipulation of

sound samples and they can make use of the Table classes. The SndIO tree is dedicated to all the

rocesses involving sound input or output: disk, ADC/DAC, screen printing, etc.. These classes use

2 SndObj as their input and a SndlIn class (derived from SndObj) can receive a SndIO-derived

input, completing the link with the real world. In order to provide sound buffering services, a
circular buffer class, SndBuff, was implemented and is used by the SndIO-derived classes.

2.1 The SndObj classes
A brief description of the interface for the SndObj base class is shown below:

class SndObj {
protected:
float* output; // output samples buffer
float m_sr; // sampling rate
- int m_error; // run-time error code
short m_enable; // object status (default ENABLED)

public:
void Enable(); // enable object
void Disable(); // disable object
float GetSr(): // get the sampling rate
void SetSr(float sr); // set the sampling rate
float Output(); // get the current output sample
virtual char* ErrorMessage(); // error messages
virtual short DoProcess(); // processing

1

The sound objects have one output, a sampling rate, an on/off switch and an error code.
They. also have a DoProcess () function that carries out all the due processing of a particular
object and other methods to access its member variables. The derived classes have an undefined
number of inputs (objects and/or set values) and some of them also rely on maths function-table
objects to do their processing having one or more members of the Table type. Some examples of
SndObj classes already implemented are: Oscilt and Oscili, two types of oscillators; Mixer, a sound
object mixer; Gain, a gain modifier; Rand and Randh, two types of noise generators. Many other
classes, such as envelope shapers, filters and delay-line objects were also implemented and some
spectral-domain processing objects are being developed. The sound processing objects are designed
to be easily interconnected, as it will be shown in the programming example. Most of them can
receive one or more SndObj inputs. For instance, Oscillators can receive any sound object as their

97

frequency and amplitude inputs. Filters receive SndObjs as their audio input, as well as thej
frequency and bandwidth inputs. Mixers can receive any number of input objects and mix the
together. The ability to make patches of processing boxes gives the flexibility necessary for user
to create a great number of applications. As an example of a SndObj-derived class, an abbreviate
definition of the Mixer class is shown below:

class Mixer : public SndObj{

protected:

SndObjList* m_InObj; // list of input SndObj

int m_ObjNo; // number of input objects
public:

Mixer () ; // constructors and destructor
Mixer (int ObjNo, SndObj** InObjs);
~Mixer () ;

int GetObiNo(); // return number of inputs

short AddObj(SndObj* InObj); // add an Sndobj to the

// input 1list
virtual short DoProcess(): // mixing operation
virtual char* ErrorMessage(); // error messages

Y

This object can receive any number of SndObjs as its inputs, adding them to an input lis

set later by the AddObj (. . .) method.
2.2 Tables

The table classes were developed to supply certain sound objects with tabulated maths-
functions. A common use for them is to provide one cycle of a certain waveshape to be
continuously sampled by an oscillator. The HarmTable is an example of such an object that creates
any of the following four harmonic waveforms: sine, saw, square or pulse (buzz). It can be used by
an oscillator to create a pitched sound of a particular timbre. Similar to that, is the UsrHarmTable,
which allows the user to define the relative amplitude of the individual harmonics. Another
common type of function table is to store a shape to be used as an amplitude or frequency envelope.
The TrisegTable class creates a three-segment line, with the option of logarithmic or linear lines,
that can be used by an oscillator to control a parameter of some other sound object. Also, a

98

The mixing is done by summing the output samples of the input objects in the DoProcess ()
method. An instance of the Mixer class can be created either by passing the number of initial
SndObj inputs and an array of SndObj pointers or as an empty object whose inputs are going to be

generalized Hamming window function table is supplied, as the HammingTable object. Table
objects are very useful and can be employed in a variety of ways and will be constantly acided to
the library implementation.

2.3 Input and Output

The SndIO classes are designed to deal with all the input and output services need b the
sound objects. They provide the Read () and Write () methods that will be used to perforn); the
1O functions, regardless of whether the target is a soundfile, the ADC/DAC, the computer screen
or some other device. The derived classes are designed to fit into these main categories: soundfile
10, which will have derived classes for each format, DAC/ADC 10 and screen output, both havin
derived classes that will be platform-dependent. The resumed description of the inte’rface for thi
SndIO class is shown below:

class SndIO {
protected:
float* output; // output sample buffer
SndBuffer* m_SndBuff; // internal buffer
float m_sr; // sampling rate
int m_error; // run-time error code

public:
float GetSr(); // get the sampling rate
float Output(int channel);// get the current output sample
// for the specified audio
. // channel

virtual short Read(); // read from device

virtual short Write(); // write to device

virtual char* ErrorMessage(); // error message

};

Some classes of the input and output tree were initially implemented. SndFIO is a SndIO-
derived abstract class that controls file I/O, from which other classes, dealing with specific
soundfile formats, are derived, like SndWave and SndAiff. Two classes are derived from SndWave
SndWavel and SndWaveO. They perform RIFF-Wave file input and output, respectively. SndAifﬂ,
and SndAiffO are SndAiff-derived classes that deal with AIFF soundfile format. A special sound
object, Sndln, can receive one-channel sound input of SndIO-derived object. Its output can be used
by any SndObj-derived object in the processing chain. For multichannel input, multiple SndIn
objects can be used.

99

3 Programming example

The following application uses some of the Sound Object classes to simulate the ingenigy
Jean-Claude Risset design (Dodge & Jerse, 1985). The output sound is a cascading harmonie
drone, created by the minute differences in frequency of the nine oscillators employed. Thi

programme, named Risset, can be called with the following command line:

Risset filename.wav.duration(s) £r(Hz).amp(dB) no_of_harmonics

This application consists basically of a main () function that uses the Sound Objec
Library classes. It uses four types of sound objects: Oscilt, a truncating oscillator; Oscili,
interpolating oscillator; Gain, a gain control; and Mixer, a sound object mixer. The code ¢y
be divided in two parts: the creation and patching of the objects and the synthesis loop. In the firs
all the boxes are set and connected: the mixer receives all the nine interpolating oscillators 3
inputs, which in turn receive the truncating oscillator as their amplitude input. The SndwWave
sound output receives the gain object, which attenuates the mixer signal. The synthesis loop i
simply based on the ordered calls to the DoProcess () methods of the respective objects
followed by a call to the soundfile output Write () member function. The complete code (wit

the exception of the usage () function) for the Risset program is shown below.

//**//

// RISSET.CPP //
// Sample application using Sound Object Classes -1/
// synthesizes a cascading harmonics drone, as /7
// designed by J C Risset //
// Victor Lazzarini, 1997 //

//**//
#include <iostream.h>

#include <stdlib.h>

#include "AudioDefs.h"

void usage () ;

int

main(int argc, char* argv([l){
if(arge !'= 6){
usage(); // usage message
return 0;

}

// command line arguments) :
float fr = (float)atof({argv([3]); // frequency

100

float amp = (float)atof(argv(4]); // amplitude

float duration = (float)atof(argv[2]l); // duration.

)/ Envelope breakpoints & function table object
float TSPoints[7] = {.0f£, .05f, 1.f, .85f , .8f,

TrisegTable envtable (512, TSPoints, LINEAR);

// Wavetable object

garmTable tablel (1024, atoi(argv[5]), SQUARE);

// truncating oscillator object (envelope)

oscilt envoscil (&envtable, 1/duration, 32767);

// 9 interpolating oscillator objects

Oscili oscill (&tablel, fr, 0.f, 0, &envoscil)
Oscill oscil2 (&tablel, fr-(fr*.03£/110), O.f,
Oscili oscil3 (&tablel, fr-(fr*.06£f/110), 0.f,
Oscili oscild (&tablel, fr-(fr*.09£/110), O.f,
Oscili oscil5 (&tablel, fr-(fr*.12f/110), O0.f,
Oscili oscil6(&tablel, fr+(fr*.03f/110), O.f,
Oscili oscil7(&tablel, fr+(fr*.06£/110), O.f,
Oscili oscil8({&tablel, fr+(fr*.09f/110), O.f,
Oscili oscil9 (&tablel, fr+(fr*.12£/110), O.f,

// Mixer & gain objects
Mixer mix;
Gain gain((amp-15.f), &mix);

// Add the oscili objects to the mixer input

mix.AddObj (&oscill) ;
mix.AddObj (&oscil2) ;
mix.AddObj (&oscil3) ;
mix.AddObj (&oscild) ;
mix.AddObj (&oscilb) ;
mix.AddObj (&oscils) ;
mix.AddObj (&oscil?) ;
mix.AddObj (&oscil8);
mix.AddObj (&oscil9) ;
// output to a RIFF-Wave file

SndWaveO output(argv([(1l], 1, 16, OVERWRITE) ;
output.SetOutput (1, &gain);

// synthesis loop

OO OO OOOO

P T TR S S

1f, J5f};

&envoscil) ;
&envoscil) ;
&envoscil) ;
&envoscil);
&envoscil) ;
&envoscil) ;
&envoscil) ;
&envoscil) ;

unsigned long dur =(unsigned long) (duration*envoscil.GetSr());

101

for (unsigned long n=0; n < dur; n++) {

); // envelope
// oscillators

envoscil.DoProcess (
oscill.DoProcess();
oscil2.DoProcess|();
oscil3 .DoProcess () ;
ogscil4d.DoProcess () ;
oscil5.DoProcess();
oscil6.DoProcess () ;
oscil7.DoProcess();
oscil8.DoProcess() ;
oscil9.DoProcess();
mix.DoProcess () ;
gain.DoProcess () ;
output.Write();

// mix
// gain attenuation
// file output
}
return 1;

}

Similarly, a user with some knowledge of C/C++ can easily build signal processing
applications, just by writing his/her own main () functions and patching together the library
objects. In addition, an experienced programmer would be able to extend the library by adding

application that will let the user play with the sound objects to create his/her own signal processi

module, by interconnecting the available boxes. At the present moment, some sam[;lece§51n%
applications were developed using V and the SndObj library, running under MS-Windows aVI(;l;?
windows (AIX and Solaris). These are intended as test applications for the deVelopmen? £ _
portable GUL This would provide an intuitive use of the library objects and a powerful toolof ;
composers of electroacoustic and computer music. o

- ¢ Conclusionr and further research

This paper described the development of a set of objects for sound manipulation in the
computer. The Sound Object Library is being designed to be a comprehensive multi-platform set
of C++ classes to be used by programmers and composers. It has a modular design, akin to analo
synthesizers and computer music systems, and simple connectivity. All the processes involved jﬁ
the sound production, manipulation and storage are encapsulated by the library classes. Research
is continuously being carried out in the development of new objects, including spectral analysis
and resynthesis. The development of a GUI for the library, using the multi-platform V framework
is also under study. A beta-version of the first release of the SndObj library, together with,
command-line and graphic sample applications, will soon be available for download at the internet
site http://www.dcop.uel.br.

Acknowledgments

his/her own processing objects.

The authors would like to thank CNPq for financial support of the present research and the

Department of Computer Science (UEL) for granting the use of the IBM-RISC lab and the

4 Sample applications
ULTRAsparc workstation.

Together with the development of the SndObj library, a number of sample applications
were developed with a twofold purpose: as a set of programming examples and as a group of useful
programs to be used in computer music composition. They include command-line cutting, splicing
and mixing programs, multi-purpose filters, reverbs, synthesizers and other utilities. It is expected
that they will form a comprehensive set of tools for composers of electroacoustic and computer
music: The technical documentation of the SndObj library will include the complete code for all

the sample applications.

Bibliography

Dodge, C & Jerse, T (1985). Computer Music: Synthesis, Composition and Performance. Schirmer
Books, New York. '

Lazzarini, VEP (1998). "A Proposed Design for an Audio Processing System ". Organised Sound
3 (1). Cambridge Univ. Press, Cambridge. .

Moore, FR (1990). Elements of Computer Music. Prentice-Hall, Englewood Cliffs.

Stroustrup, B (1991). The C++ Programming Language. Addison-Wesley Publishing Co.,

Reading, Mass..

Rumbaugh, J ; Blaha, M; Premerlani, W Eddy, F; Lorensen, W (1994). Modelagem e Projetos
Baseados em Objetos, Editora Campus, Rio de Janeiro.

Vercoe, B (1992). Csound, A Manual for the Audio Processing System. MIT, Cambridge, Mass..

Wampler, B (1996). V Reference Manual. HTML document. http://www.cs.unm.edu/

~wampler/vwebref.html »

5 Graphical user interface

Studies are being carried out to couple the development of the library objects with a
graphical user interface (GUI) using the V C++ framework (Wampler, 1996). V is a portable C++
GUI library developed for X-Windows and MS-Windows environments. Because of its portability
across the platforms used in this research project, it has been considered for the implementation of
visual counterparts to the objects of the Sound Object Library. These would be processing boxes
that would provide an intuitive interface to the C++ code. The initial idea is to develop a patching

102 103

