Usual sentence derivation from a grammar will automatically generate the desired structure
for the generated music. The user may impose restrictions, .g. on the maximum number of
fragments, of fragments of a given type, of repetitions of certain sequences of types. The
expected result is the automatic generation of music with sound similar in quality to the
previous ones, and showing the structure created by the system under user’s specification.

6.4-Phase 3 - to be started in short term - the next stage refers to obtaining structuring
rules automatically. The underlying grammar of the structure imposed to automatically
generated compositions will be itself deduced by the system. A musician must help in this
activity by supplying structural analyses for a significant set of works to be used as models,
identifying and classifying the fragments in each work. Then, an algorithm is executed to
make a grammatical inference that generalize the information extracted from the given
samples, in order to infer a formation rule to be used as a grammar describing the desired
structure. This phase will result in a complete synthesis program, for music will then be
obtained automatically both in contents and in formal structure. User’s participation will be
restricted to inserting information on the structure of the samples used as models.

6.5-Phase 4 - this phase is foreseen to begin in some years. It is much more complex,
because it should include heavier artificial intelligence resources; in order to operate with
no human-supplied information concerning the structure of the pieces used as models.
Structural analysis should be made by programs with enough built-in knowledge on musical
analysis to allow automatic identification of the musical elements present in the score. This
phase will produce software that will be able to perform musical analysis and synthesis,
without direct participation of the user.
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ABSTRACT

The concept of mathematical structures called Functors can be

useful to develop a large number of compositional algorithms.

We introduce here concepts such as Categories and Functors

as generalised sound construction tools. We define two

applications: a functor between plane curves and sound events

based on the MIDI protocol and a functor between the class of
continuous curves C(x) defined in a finite interval I < 9% and -
the class ¥ of Fourier Spectra A(v).

INTRODUCTION

Music composition is plenty of procedures that can be related to mathematical
symmetries, it is presented in (Hofstadter 1989), a study relating music, design and
mathematical structures. On the other hand, music symmetries can be better understood
and handled if we search for underlined or hidden mathematical structure that generates
them. In this work we show that the intuitive use of symmetry and associations in music
can be studied and explored through the mathematical concepts of Category and Functor.

+ This approach is interesting, not only because it can be used to classify sound
material, but mainly for it furnishes new relations pointing out to an enormous variety of
sound generation methods. In short, we claim that Functors, in the same way it was firstly
devised in mathematics (Maclane & Birkohoff 1953, 1979; MacLane 1971), can be
generalised as universal tools to construct mathematical models for music composition
and sound synthesis.

There has been a series of approaches applying mathematics to build sound structures
such the use of 1/f noise fractal distribution (Voss & Clark 1978; Bolognesi 1983), non-
linear dynamical systems and iterated function systems (Pressing 1988; Scipio 1990;
Gogins 1991). There is a study about these systems in (Manzolli, 1993a).

Our group has been worked with applied mathematics to produce sound design
machines focusing new methods for sound synthesis using non-linear dynamics (Manzolli
1993b), mathematical models for algorithm composition such as Markov Chains and
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Boundary Functions (Manzolli & Maia 1995) and development of interactive desktop and
gesture interface for composition in real time (Manzolli & Ohtsuki 1996).

Below, we discuss Functors as generalised Algorithmic Compositional tools for
sound construction defining Class, Morphism, Category and Functor. It follows applicationg
in the sound domain.

CATEGORIES AND FUNCTORS

Functor is a kind of function, as suggested by its own name, but it is not an ordinary one
because it carries the underlined structures of the sets in which it is applied. These sets are
called Categories. More precisely, a Category @ is defined by three proprieties:

a) A class of objects A, B, C...
b) For each pair of objects A, B € ® we have a set of applications (morphisms)
M(A,B) from A to B. N
¢) For each triple of objects A, B, C € @ we have a composition law for the
morphisms
M(A,B) x M(B,C) — M(A,C)
(f’g) —> g0 f

Now, for the proprieties above it follows three axioms, which are primary properties of
these categories:

A,). The sets of morphisms M(A,B) and M(C,D) are mutually disjoints unless A =C and
B=D. ‘

A,) Associative Law: h(gf) = (hg)f .

A;) Existence of Identity: for each object A there exists a morphism identity 15: A —>A
such that for any f: A——B and g: C——A we have fol, =f and Ipog- g

Usually, the theory of categories and functors is mathematically involved. Here we
use only basic properties of the definition above to show that underlined structures can be
mapped from categories of mathematical objects to categories of sound objects and the last
undertake formal properties of their mathematical counterparts via a functor.

Given two categories ® and ¥, a functor F between @ and ‘¥ is a map which
associates each object A € @ to an object F(A) e ¥ :

F:0— ¥
. A—> F(A)
and for each morphism f e M(A,B) associates a morphism F(f) € M(F(A), F(B)) with the
properties
F(gf) = F(g) F(f)
F(1a) = 1ra)
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Functor F operates on morphisms as well on elements of the category ‘F. In this way, the
structure of a product (or composition) between two morphisms in the category (’1) is
transported to morphisms in the category ‘¥ via functor F.

There are too many examples of mathematical functors. Since we are focusing music

application only, two simple examples of functors applied to sound categories are presented
in the next section. .

APPLICATIONS

EXAMPLE 1 - Sequence of MIDI Events

We begin with the mathematical category @ = {continuous finite curves in a
pounded region U 9(2}. Given two curves Cy, C; € ®, a morphism in @ as an
application

f: C1 B Cz
. x—— f(x) :
which means to deform C, into C,, i.e. f € M(C;,C;). The product gf is defined as the
composition gf = gof

Ci C, Cs

Figure 1. Composition of Plane Curves

We define ¥ as a category of functions to control sound parameters described by the
MIDI (Music Instrument Digital Interface) protocol. Thus, F(f) ¢ M(F(C; ), F(C,)) and .
F(f) deforms F(Cy) to F(C,). Given a curve C in ', the function F(C) € ¥ can be defined
in several different manners. Particularly, F(C) can be expressed by the Distance Function
between a fixed point in the plane to the points of the curve C. It is easy to see that the
functor property is satisfied, namely

F(g(f(C))) = F((gh)(C)) = F(e)F(D(F(C))
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C
Cl f 2

Figure 2. Diagram of the Functor operation

We have implemented this functor of plane curves to MIDI parameters in a computer

program called CurvaSom. This software uses a graphic interface running in a MS
Windows NT environment. Here we are just introducing main theoretical aspécts of the
Sound Functor approach.

EXAMPLE 2 - Sound Synthesis

In this example, an application of a functor is used to build Spectral Envelops. We take as
mathematical category, a class @ of smooth functions C(x) defined in a finite interval I
R and as sound category, a class ¥ of Fourier Spectra A(v) of a finite set of sounds. Here
the function C(x) acts as a shaper of a spectral set. Starting from a fixed spectrum, which
we-call Input Spectrum, we use deformation of curves as morphisms in both classes of
functions. We construct the following Functor:

Frd— VY
C—— F(C) =C(A(V))

Where the parameter x = AW ), with 0 £ x5 Ay, and A, is the maximal amplitude
considered .

The morphisms in @ are deformations of smooth functions and the morphism in ¥
can be chosen as F(D)=f. This means that the morphisms in @ are used as spectral
deformations. Using the above definition it is easy to see the property F(g) F(f) = gf =
F(gf) is satisfied.
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Input Spectrum

Figure 3. Spectrum Functor Diagram

CONCLUSION

We can construct several examples similar to the above ones. Another example using a
different mathematical construction is presented in (Maia, Valle & Manzolli 1998). Other
mathematical structures like groups, lattices, algebras, several different geometrical and
topological structures can be used as mathematical categories (see MacLane 1971) in
order to get sound outputs through a suitable choice of functors. Functors allow us to
construct a huge quantity of sound outputs reflecting the structure (or symmetry in several
cases) of external mathematical categories used to generate them. Musicians who work on
Computer Music, aware of the properties of functors, can expand their sound tools in a
way, certainly, not yet explored by the authors of this paper.

" Mathematical tools in composition brings new possibilities for composers envision
development of Compositional Systems. Research in Computer Music provides powered
tools for constructing these systems. This union of artistic and mathematical knowledge
creates a framework for investigation and music production, an environment for applying
mathematics in order to manipulate sound structures. Mathematical models presented here
could be expanded using graphic interfaces to create new musical performance situations,
making mathematical design to produce computer music instruments.
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Abstract

The process of musical composition can be benefit by the use of resources extracted
from a database of musical passages. For this purpose, the composer may have
access to the sound resources and be able to manipulate them in the compositional
process. The traditional musical representation employed at the conventional music
compositions allow the composer to retrieve the necessary information, to process it
and to restore it in the same representation. The musical data in non conventional
composition can’t be represented only by the conventional written. In this case, the
musician needs an resource that let the composer select music passages based on
musicai characteristics. One of the goals of information retrieval of musical data is to
aid the research in compositional resources, like selection of timbre in a database.
The database with this capability might provide the access to all the conventional
attributes like alphanumeric data and the musical data. This paper investigates this
kind of search and retrieval and which criteria one may consider at the musical
information retrieval process.

1 - Introdugio

Sistemas de recuperagdo de informagio processam requisicdes de informacdes sobre
arquivos identificando e recuperando destes certos registros que atendem aos requisitos

exigidos. A recuperacio de alguns registros em particular depende da similaridade entre
estes e as consultas. Esta similaridade pode ser medida através da comparagiio de valores de
certos atributos dos registros com os valores requisitados pela consulta. Em muitos
sistemas de gerenciamento de banco de dados os arquivos contém registros homogéneos,
com um conjunto de atributos especificado para caracterizar cada item do arquivo e com
valores dos atributos que conseguem descrever univocamente e de forma completa os
registros armazenados. Nestas circunstincias a recuperagio de informaco depende de uma
comparagdo exata entre os valores do arquivo e os da consulta. O nome de um autor ou
intérprete, a data de nascimento, a sua nacionalidade e os titulos das obras musicais sdo
tratados como dados ndo ambiguos e o processo de recuperagfio baseado nestes critérios é
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