
From the concept of sections to events in Csound

Pedro Kröger1

1Escola de Ḿusica da UFBA
Parque Universit́ario Edgard Santos, Canela

Salvador, BA, 40150–480

kroeger@pedrokroeger.net

Abstract. This paper approaches some solutions involving the division of the
csound score in smaller parts to reduce its rendering time to a minimum. The ul-
timate solution involves the use of events. Besides solving elegantly the problem,
the definition of events make possible the creation of scores with a hierarquical
structure. This concept has been implemented in Monochordum, a composi-
tional environment for Csound.

1. Introduction

Csound uses two files as input, the orchestra and the score file. Traditionally only one
monolithic score file is used per composition. Unfortunately, Csound does not have any
device to compile1 only separated parts so the full composition is rendered even if only
one part was modified. Nevertheless, it is not very productive to wait for the rendering of
the entire piece only to hear one small section.

In this paper some solutions for this problem will be proposed based in splitting
the score into smaller parts and using the utility for recompilationMake. The goal is to
reduce the time for recompilation to a minimum.

Finally, a solution will be introduced involving the use of events, a structure be-
tween the list of notes and the section. The use of events not only solves elegantly the
problem but allows the creation of hierarquical structures. Besides the possibility of defin-
ing blocks of events, it is possible to define the relationship between these events. This
concept has been implemented in Monochordum, a complete compositional environment
for Csound.

2. Solutions

2.1. Manual splitting

Commenting sections out is a primitive way to select parts to render. Although this proce-
dure works with small files, it is impracticable with larger ones with hundreds of lines. A
better way is to use the Csound’s#include command. Sections are saved in separated
files and called in a main file with the#include command (ex. 2.1). The sections not
going to be rendered can easly be commented out. For example, section 3 in ex. 2.1 will
not be compiled.

This procedure has some advantages; it only uses Csound (not needing any exter-
nal tool), and arbitrary sections can be selected (e.g., sections 1 and 3).

1In this article the word “compile” is used as synonym for “render”, i.e., run Csound over an orchestra
and score files to get some output (usually a sound file).

Example 2.1The main score file
1 #include :section-1.sco
2 s
3 #include :section-2.sco:
4 s
5 ;#include :section-3.sco:
6 e

The disadvantages are: the selected sections are always fully compiled, even if
nothing was modified at all; there are more files to manage, and the#include command
has a long history of bugs.

Using Make. The previous solution can be much more automatized withMake. The
same file structure as in ex. 2.1 is kept, but the main score file is discarded.

The Make tool was created to automatize the process of program compilation. It
can recompile only the necessary files based in the modified source files. Although widely
used to manage computer programs, “make is not limited to programs. You can use it to
describe any task where some files must be updated automatically from others whenever
the others change”. (Stallman and McGrath 1998, p. 1)

A deeper description of Make is out of the scope of this paper, for more informa-
tion please refer to the manual.

The ex. 2.2 shows a simple use of Make. The rulesec1.wav is defined and can
be called by typingmake sec1.wav in a terminal.

Example 2.2Rule for a section
1 sec1.wav: sec1.sco
2 Csound -Wo sec1.wav Main.orc sec1.sco

Since we don’t have the main score anymore we need some way to mix the sec-
tions together. The Csoundmixer tool or programs likeecasoundandsoxcan be used for
this purpose.

The real power of Make can be seen in ex. 2.3. The ruleMain.wav has the
rules sec1.wav , sec2.wav , andsec3.wav as dependencies. That means that to
be able to perform the command in the “Main.wav” rule the three dependencies have to
be complete. If one of them is not, Make will automatically compileonly the missing
section. An overview of the process is shown in fig. 1.

Example 2.3The mixer
1 Main.wav: sec1.wav sec2.wav sec3.wav
2 mixer -T 0 sec1.wav \
3 -T 120 sec2.wav -T 160 sec3.wav

Conclusion. By splitting the score into separated files and using Make, the renderization
of individual sections is possible, giving more flexibility and speed. The second solution
shows an advance in comparison with the first, since in the later the renderization time is
not as small as in the former. Nevertheless, in both solutions the files have to be created

Figure 1: Overview of the process

and named manually. This is a hassle, especially if the composition changes and new
sections are created between the existent ones.

2.2. Automatic splitting

In the previous sections we could see how handy and flexible is the use of Make to ren-
der Csound scores. The major problem is the somewhat cumbersome management and
editing of separated files in large compositions. In this section will be presented a few
solutions using the same concept but now the composer will be dealing with one score
file only. The secondary files will be generated automatically.

Using the section commands . Probably the most direct aproach is the creation of a
script that will read the score and create one file for each section defined withs . Thus, the
problem of managing multiple files is solved, they are created automatically and named
according a given prefix. The sections then can be compiled with the commandmake
prefix sectionNumber . (fig. 2)

Figure 2: Splitting the score

Using a new section command. Although the previous solution is a great improvement,
the mixer data is still separated from the music. A more complete solution is to create a
new commandsection . It accepts a label and the start time of the section. Naturally
Csound doesn’t have this command and we are not going to implement it in Csound’s
core. The previous script will be modified to extract the sections using the new command.
Since we want to have some backward-compatibility thesection command will be
preceded of the comment character; and the| character. The later is necessary to avoid
the script catching a valide comment with the word “section”. The ex. 2.4 shows the
syntax. The lines 1 and 4 define valid sections while in line 7 we have a regular comment.

Now not only the files for each section are automatically generated but the mixing
data as well. A good side effect of this approach is that the user no longer uses the mixer
commands directly anymore. The mixing engine can be replaced without the user notice.

This is the best of the four solutions, backward compatibility is kept while gives
more power, flexibility and convenience.

Example 2.4Thesection command
1 ;|section foo 0
2 i1 0 10 ...
3 more notes here
4 ;|section bar 10
5 i1 0 10 ...
6 more notes here
7 ; section, sweet section
8 i1 0 10
9

3. From the concept of sections to events

3.1. Introduction

The previous solutions splitted the score in sections to recompile only the necessary parts.
However, this procedure is inefficient when the goal is to manipulate smaller elements. In
fig. 3 the boxes represent events in time. The common aproach of moving events around
while composing is cumbersome with plain Csound because the durations of notes have to
be recalculated manually, one by one. Splitting the score into sections, as in the previous
examples, would not work since the large box in 3 delimits a section. The best solution is
the possibility of definingevents.

Figure 3: Events

I am working in a compositional environment called monochordum that uses
Csound as a rendering engine. It implements, among other things, the concept of events.
Monochordum works basically using the same idea of the previous examples; it creates a
separated score for each event and a Makefile to control the rendering process.

The ex. 3.1 shows the basic syntax to create events. An event is defined with the
event command followed by a label. The start time of each event can be defined with
the option-start . The Csound code is inserted afterevent and the label, between
curly braces. The option-gain determines the event’s gain value in the final mixing.
(fig 1)

Naturally, events can be nested. At that point it is possible to represent hierarquical
and more complex structures than with plain Csound, or even with the previous section-
based solutions.

3.2. Advanced features

In monochordum an event time can be expressed in relation to the time of other events.
The implementation was freely based in the relations proposed by Allen (Allen 1991).
This relations can indicate that one event starts after another event, or one event starts with
another one. In ex. 3.2 the event “bar” starts right after “foo”, while the event “chords”
starts at the same time of “bar”. The fig. 4 shows a graphic representation of ex. 3.2.

Example 3.1Event syntax
1 event foo {
2 i1 0 2 ...
3 ...
4 }
5 event bar {
6 i1 0 3
7 ...
8 }
9 foo configure -start 0 -gain .5

10 bar configure -start 30

Example 3.2Events relations
1 foo configure -start 0
2 bar configure -start {after foo}
3 chords configure -start {with bar}

Events definitions can be more flexible if they have paddings (positive or nega-
tive). In ex. 3.3 both events “bar” and “chords” start after “foo”, however “bar” has a
padding of 2 seconds while “chords” a padding of -2 seconds. (fig. 5)

Others relations such asbefore , finishes , middle andmeets are avail-
able, but the user can create their own relations as well.

4. Implementation

Monochordum is implemented in [incr tcl], a well-known object-oriented extension to
Tcl. Besides the general organization of classes in attributes (e.g.start andduration)
and methods (e.g.with , before , andafter) some features of [incr tcl] are used such
as theconfigure command. The value of an attribute can be changed with the com-
mandobject configure -attribute value , where object is the name of the
object, attribute is the name of the attribute, and value is the new value of the attribute.

5. Future work

This idea can be extended to work with other languages besides Csound. This will allow a
more easy and consistent use of languages with different paradigms. A feature already im-
plemented in monochordum is a high-level score language, capable of using notes names
or letters (e.g.do or c), rhythms, chords, graphical notation (usinglilypond), etc.

6. Conclusion

The score splitting into smaller files and the use of a recompilation tool such as Make can
provide more flexibility, speed, and power in the process of Csound rendering. Neverthe-

Figure 4: Events relations

Example 3.3Events padding
1 bar configure -start {after foo} -pad {2s}
2 chords configure -start {after foo} -pad {-2s}

Figure 5: Events padding

less is necessary to create some sort of device to split the score and generate the secondary
files automatically. The ultimate solution is the definition of events, a structure between
a note list and a section. Besides solving elegantly the former problem, the definition of
events make possible the creation of scores with a hierarquical structure. This concept
has been implemented in monochordum, a compositional environment for Csound.

References

Allen, J. F. (1991). Time and time again: the many ways to represent time.International Journal
of Intelligent Systems 6 (4), 341–355.

Stallman, R. M. and R. McGrath (1998).GNU Make: A Program for Directing Recompilation.
Boston, MA: Free Software Foundation.

