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Abstract. In this paper we present a model for granular synthesis in which the
internal content (spectrum) of grains are defined as Fuzzy Sets. Markov Chains
modulated by Membership Matrices related to the internal structure of the sound
grains are used to control the evolution of the sound in time. The final sequenc-
ing of grains (sound stream) is controlled by the so called Walsh Functions.
Using a number of channels the outputs may have complex polyphonic sound
structures. We also provide the mathematical foundations of the model.

1. Introduction

Granular synthesis [Roads, 1988] is commonly known as a technique that works by gen-
erating a rapid succession of tiny sounds, metaphorically referred to as sound grains
[Roads, 1996]. Granular synthesis is widely used by musicians to compose electronic
or computer music because it can produce a wide range of different sounds, but it also
has been used in speech synthesis [Miranda, 2002]. Clearly a discussion about musical
aesthetics may arise from these developments. Although such discussion would be a very
interesting topic on its own right, we will not deal with these matters in this paper. A good
discussion on the aesthetics of microsound can be found in [Thomson, 2004].

Granular synthesis is largely based upon D. Gabor idea of representing a sound
using hundreds or thousands of elementary sound particles [Gabor, 1947].

In this work we take C. Roads’ definition of sound grain as a point of depar-
ture to develop a formal but flexible granular synthesis model. Our model uses stochas-
tic processes, namely Markov Chains with Transition Probability Matrix modulated by
Membership Functions of the grains with values in the interval[0, 1], which give fuzzy
characteristics to the grains. Thus, we propose a new method for controlling the grains by
intertwining Stochastic Processes and Fuzzy Set Theory, where the content of the grains
(or internal variables) can change their transition probabilities between states. For the
sake of clarity, we have chosen a very simpleState Spaceto introduce the model, where
each grain is itself a state of a Grain VectorG. Therefore, the membership functions in
this case modulate the transition probabilities between states (i.e., grains), changing their
ordering position in the time domain. In this paper we present just one of the several
possible modes of interaction between internal and external control variables.

Walsh functions were used as tool for code transmission by electro-
magnetic signals [Beauchamp, 1975], [Hall Jr., 1986]. In adition in the 70s



they were used for real sound synthesis [Rozenberg, 1979],[Hutchins Jr., 1973],
[Hutchins Jr., 1975],[Insam, 1974]. Our application differs from the last authors since
we are most interested to use Walsh functions as a control for sound output of grains
streams. As far as we know this is the first model in this direction.

In the next section we present the concept of Fuzzy Grains and their mathematical
representation. In section 3 we describe the control of grain streams including halting
criteria, a computer implementation, which we named Fuzkov 1.0, and the control of the
sound output by Walsh Functions. In section 4 we conclude with some comments and
some perspectives for future work. In addition we provided two appendices, namely, the
first one is a very short review on Fuzzy Sets and the second one on Walsh Functions.

2. Markov Processes for Fuzzy Grains

Fuzzy Sets [Zadeh, 1965] are able for handling uncertainty, imprecisions or vagueness.
Our aim here is to get a kind of Markov Process in which the Transition Matrix could be
modified by the internal content of the grains. In order to weight the contribution of each
Fourier component we have used a Membership Function for the grains from Fuzzy Sets
theory. In Appendix A we present a short review of Fuzzy Sets.

In this work we are mainly interested in the output control of the material gener-
ated by Fuzzy Granular Synthesis. For the sake of completicity we explain shortly fuzzy
grains and their generation.

Let us denoteΩ the space of all possible oscillators, that is thefrequency× ampli-
tudespace of the ordered pair(ω, a), where the variablesω anda varies in some suitable
real intervals.Ω is referred to as a Parameters Space. In this work we define a graing as
a finite set of points{(ωi(t), ai(t)), i = 1, 2, . . . , N} in Ω. The sound in the macro scale,
or in more technical words, the time ordering of grains and their subsequent sound output
is generated as a Markov Chain. So a grain can be described by its Fourier Partials inside
a real intervalI. Clearly, this is suitable for producing grains with additive synthesis. Its
spectral content can be written, without loss of generality, as

G(t) =
N∑

n=1

ansin[2πωnt + δn], (1)

wherean, ωn, δn reads for amplitude, frequency and a possible phase, respectively. In
granular synthesis a sound can be viewed as a quick stream of grains which, from a
geometrical point of view, describes a trajectory in theΩ space. Subsets of points inΩ do
not have a natural well ordering for the space part. In our model, the internal content of a
grain is coded in matrices. All operations on grains are represented as matrix operations.
For the sake of completeness, we present an ordering of the elements of the grains, but
this is a highly arbitrary choice. Below we just show the simplest ordering: that one that
access the grain content (which is a two dimensional set of points) from the left to the
right (that is, from low to high frequencies) and from the bottom to the to top (that is,
from low to large amplitudes). This is formally written as follows: letxi = (ωi, ai) and
xj = (ωj, aj) be two arbitrary points in theΩ space. Fori 6= j

xi < xj ⇔
{

ωi < ωj

ωi = ωj ⇒ ai < aj
(2)



With this definition the matrix representation of a graingi with r components reads
as a2× r matrix:

gi =


ωi

1 ai
1

ωi
2 ai

2
...

...
ωi

r ai
r

 (3)

where the above defined order is implicit.

Now, a fuzzy grain can be represented as a three column matrix

Gi =


ωi

1 ai
1 αi

1

ωi
2 ai

2 αi
2

...
...

...
ωi

r ai
r αi

r

 (4)

where we have introduced a third column with the membership frequency and amplitude
values of each partial of the graingi. Note thatgi is a particular case ofGi for αi

1 =
αi

2 = . . . = αi
r = 1. We can denote shortly this matrix byGi = [ωi, ai, αi], where

ωi = [ωi
1, ω

i
2, . . . , ω

i
r], ai = [ai

1, a
i
2, . . . , a

i
r], andαi = [αi

1, α
i
2, . . . , α

i
r] are the frequency,

amplitude and membershipr-vectors of the grain. Also we defineN -vectors of grains
g =

[
g1, g2, . . . , gN

]
andG =

[
G1, G2, . . . , GN

]
.

Below we show how the membership functions of fuzzy grains can modify the
Markov Transition Matrix and so we get a fuzzy control for the Markov Chain. For a
good account of Fuzzy Sets the reader is refereed to [Diamond and Kloeden, 1994]. Let
us consider a grain described by its Fourier-like equation (1). Each subset of points inΩ
represents a grain with particular Fourier partials, that is, it is a sum of basic sinusoidal
frequencies. With the above defined matricesGi, it is possible to define an unambigu-
ously time evolution of grains through out Markov Chains. This is usually accomplished
through a Fuzzy Transition Table, constructed as follows: firstly, suppose that we have a
transition matrix for ordinary grains, that is, with no membership vector yet defined. This
can be written as follows: 

g1 g2 . . . gN

g1 p11 p12 . . . p1N

g2 p21 p22 . . . p2N

. . . . . . . . . . . . . . .
gN p1N p2N . . . pNN


which can be viewed as a function

p : g × g −→ [0, 1]
(gi, gj) 7−→ p (gi, gj) = pij

Now, we define a Fuzzy Extended Probability Transition Matrix (or simply Fuzzy
Transition Matrix)Q : G×G −→ [0, 1] as

Qij = Q
(
Gi, Gj

)
= Φij ∗ pij (5)

where the symbol∗ means a matrix operation (e.g., a scalar product, a matrix product
or any other well defined operation). The functionΦij is generated as a finite number of
applications of the following basic operations of fuzzy sets: fori, j = 1, 2, . . . , N , we
define



1.
φij = max

1≤k≤r

{
αi

k, α
j
k

}
, (6)

whereαi andαj are the membership vectors of the grainsGi andGj respectively.
2.

φij = min
1≤k≤r

{
αi

k, α
j
k

}
, (7)

whereαi andαj are the membership vector of the grainsGi andGj respectively.
3.

αi
c = 1− αi. (8)

These result in a product likeΦij = φij
1 φij

2 . . . φij
l , where the third operation above

can be performed on any product ofαi vectors. These are basic operations on Fuzzy Sets.
See reference [Diamond and Kloeden, 1994] for a introduction to Fuzzy Sets and their
metrics. Note that since the membership function modulates the probability valuespij,
the condition for the probability sum

∑N
j=1 Qij = 1 can be violated. In order to solve this

problem we renormalize the matrixQij as follows. Denotingqi =
∑N

k=1 Qik we define
the elements of matrixP as

Pij = Qij/qi i, j = 1, 2, . . . , N (9)

Now the probability property
∑N

j=1 Pij = 1 is clearly satisfied. The above defini-
tion shows that the internal fuzzy content of the grains have a weight (through the function
Φij) for their transition to a next state of the Markov Chain.

The Fuzzy Transition Matrix (or Table) reads


G1 G2 . . . GN

G1 P 11 P 12 . . . P 1N

G2 P 21 P 22 . . . P 2N

. . . . . . . . . . . . . . .
GN P N1 P N2 . . . P NN

 (10)

In this simple model a transition from one state to another corresponds to a jump
from a particular grain to another in the grain vectorG. In adition the fuzzy content of
a grain, that is, its membership vector, can have a significant weight on the probability
transition. Since the process is finite, a criterium to halt the process is needed here. This
will be discussed in the next section.

The above model is suitable for several kinds of matrix operations on internal as
well external variables controlling the grains behaviour in time. There is plenty of room
for the definition of a great number of different methods to generate and control the grains.
We present our approach on the control of the streams below.

3. Control of Grain Streams

3.1. Halting Criteria

There exist many different ways (algorithms) to control the evolution of the grains in
time. We show here one by using the so called Hausdorf Metric which is suitable to
measure distance between sets (grains are finite and discrete subsets ofΩ). Time evolu-
tion can be better controlled using a fuzzy metric that takes into account the degree of
membership of the Fourier partials inside each grain. In other words, partials with low
membership coefficients contribute little for the Hausdorff distance measure between the



grains. Membership vectors define the fuzzy character of the grains, or in a musical jar-
gon, their weighted harmonic content. A metric control is closely related to the notions of
approximation and/or the maximal time (or number of steps) available to run a process.
Below we indicate three stop criteria we devised to halt a Markov Chain in our model of
granular synthesis.

Halting Criteria

1. Convergent Type: If the distance between the last generated grain and a fixed grain
(target) is smaller than a prefixed arbitrary numberε, the process halts.

2. Cauchy Type: If the distance between two states is smaller thanε the process halts.
3. Maximal Number of Steps Type (MNS): Fix the maximum number of steps for the

process to halt.

Any of the above criteria can be used to halt the process. Of courseMaximal
Number of Steps Typeis the simplest one, since no metric is required. In our program
Fuzzkov 1.0we have implemented fully the MNS and partially, the Cauchy type, at the
Hausdorff Metric level, but not at the Fuzzy Metric level. We have implemented the
Hausdorff Metric as an inequality, so that FuzzKov 1.0 runs in loops until it is satisfied.
We obtained good results for both controls of the grains streams working together.

This procedure leads to a concentration of frequencies within a narrow band-
width, but with a large bandwidth for the amplitudes. Thehalting criterion here can
be taken as theCauchy type. Given an arbitrary (but small) numberε, the process stops
if dH (Gi, Gi+1) ≤ ε, where the distance between two points used for defining the above
Hausdorf Distance is given by, for example:

d ((ωi, ai) , (ωj, aj)) = max
1≤k≤r

|ωi − ωj| . (11)

If we fix a particular grain in theΩ space, such asG, we can consider theConver-
gent halt criterion, that is the proceess stops ifdH

(
Gi, G

)
≤ ε.

We can also take themean frequencyonly of the lastm grains and so it reads as

ω(l) =
r∑

k=1

ωl−m
k + ωl−m+1

k + . . . + ωl−1
k

m
(12)

and take ther closest frequencies toω(l) from the setUl =
⋃l−1

k=l−m Gk. Clearly, form = l
we get the previous model.

3.2. Implementation

This section presentsFuzzkov 1.0, a prototype implementation of our model. InFuzzkov
1.0, Membership Matrices modulate a Transition Probability Matrix of a Markov Chain,
but the internal content of the grains are not changed during the generative process. Thus,
Fuzzkov 1.0can be thought of as a system forCoarse Grain Fuzzy Synthesis. A block
diagram of the program is shown in Figure 1.Fuzzkov 1.0was implemented in MATLAB.
Input information and control parameters are as follows:

1. Control Parameters for the Markov Process
markovtype= type of generation of the Markov Matrix.
N = number of states (or number of grains).
n = number of steps of the Markov Process.
init vect type= type of the initial vector (range = 1-3).



2. Grain Parameters
fs = sample frequency.
dur = grain duration in seconds.
r = number of points in a grain, where each point is a Fourier Partial.
grain type= type of grain (range = 1-3).

3. Fuzzy Control Parameters
membtype= type of Membership Matrices (range = 1-4).
alpha type= type of vector to construct Membership Matrices (range = 1-4).

To begin with, the control parameters for Markov Processes generate a Markov
Matrix p. After a manipulation with membership matrices as in Eq. (5) we get a fuzzyfied
Markov Matrix as in Eq.(10). The grain parameters control the internal content of grains
and their output is a Fourier sum of partials as in Eq.(1). The last group of parameters con-
trols the fuzzy characteristic of the grains as described by Eq. (4) and Eqs. (6)-(8). There
are a number of possibilities to generate Membership Matrices. In our implementation
we have taken only four possibilities in Fuzzkov 1.0.

N,n,v0

alpha_type = 1 - 4

mem_type =1 - 4

Inputs

Markov chain

Fuzzy Control

[p(N,N)]

fs, dur, r, grain_type

Grain

[B(2,1,N)]

[Memb(N,N)]

[Q(N,N)]
(normalized)

[u(n+1,N)]

plot(u)

[I(1,n+1)]

[U(1,m)]

Synchronous Sequencing

Spectrogram U

Output

Output

Wavewrite U

Output

Output

Envelopes Modulation
effects

Halting criteria

Figure 1: Diagram of FuzzKov 1.0

Sound grains are generated randomly by uniform and gaussian 3D matricesA
with dimensions2 × r ×N , which includer normalized frequencies and amplitudes for
N grains (Fourier Partials). We have used uniform and Gaussian probability distributions
to gerated the sound grains. From this we obtain a MatrixB(2, 1, N) with the sum of
Fourier Partials for theN grains. A Markov transition Matrixp(N, N) is generated and
modified by a Membership MatrixMemb(N, N). A number of diferent operations are
available for this modification. We take a fuzzyfied Markov MatrixQ(N, N), which
operates on an array of probability vectorsu(n+1, N). Next, a particular filter selects the
index of the maximal value of each probability vectorI(1, n + 1). Finally, the program
reorder the Grain matrixB(2, 1, N) along the index vectorI(1, n + 1) and produce the
sound. We also generate spectral data for analysis of the results.



3.3. Control of Sound Streams by Walsh Functions

Walsh functions became important for representation of signals through the superpo-
sition of members of a set of simple functions which are easy to generate and define
[Beauchamp, 1975]. They form an ordered set of rectangular waveforms taking only two
amplitudes values+1 and−1. Walsh Functions and the Hadamard Matrices which gen-
erate them are important tools in several areas such as electrical engineering and code
theory. They are suitable to control time sequences and we have used this characteristic
to drive our grains streams. We describe shortly, below, how we control the sound output
using Walsh functions.

Each value of a Walsh function works as a trigger calling the operation associ-
ated with it. For the sake of simplicity, a Walsh function operates on a sound stream just
deleting all grains of the stream which correspond to the value−1. Also we made some
experiments using the operation of time inversion of the grain when it has the value−1
associated to it. Triggering operations with Walsh functions can produce an endless num-
ber of outputs, depending only on the chosen operations. We can also use different Walsh
functions associated to different operations and apply them indepedently on the sound
streams. In this case the results from the triggering operations can not be easily predicted.

Figure 2: A typical Grains Stream with 15 steps showing the triggering by a Walsh
Function. Silence between grains comes from the zero value of the
Walsh Function.

An interesting experiment we have realized is to create several independent Walsh
controled sound streams (using a channel for each stream) and play them sincronously.
Since the Walsh functions have independent actions, it resulted poliphonic streams with
a kind ofgrain counterpoint. When combined with some special effects, such as ampli-
tude modulation and others we get some very interesting sounds which could be used in
computer music compositions. Walsh functions, as used in our model, are time symmet-
ric. In practice, the symmetrical disposition of values of a Walsh function implies that
operations are performed symmetrically in time. This property could very interesting to
music composition. However, one should not count on recognizing such a symmetry in
the output, since is unlikely for the input to share a similar symmetry. Nevertheless, given
the scope of this work, the symmetrical properties of Walsh functions and their possible
compositional uses deserve further attention in future work.

4. Conclusion and Perspectives

We have implemented a prototype of our model using Matlab in which Membership Ma-
trices of Fuzzy grains modulate a Transition Probability Matrix of a Markov Chain which
is a partial control of the time evolution. In addition sound outputs are controlled by
Walsh Functions. This additional control leads the sound output to have a descontinuous
sequency of grains. If a number of these outputs are played syncronously we get complex
sound structures or, roughtly speaking, a kind ofgrain’s couterpointistic structures. Our
model can be generalized to include other functions besides the Walsh ones. The next



step will be to use the so calledSequency Functions[Hall Jr., 1986],[Beauchamp, 1975]
(an obvious generalization of the Walsh Functions)as triggers, and to incorporate other
sound parameters, such as intensity, spacialization, etc. This will be accomplished else-
where. As mentioned above an interesting aspect to be explored in the control of previous
material by Walsh Functions is the fact that they present some symmetries which can also
be better explored.

Appendix A: Fuzzy Sets

Fuzzy sets, first proposed by Zadeh [Zadeh, 1965] are able for handling uncer-
tainty, imprecisions or vagueness. It is not a probabilistic approach in a sense that the
membership function defined below can have value 1 for several, or even for all elements
of the Fuzzy set. Below we present a short sumary of Fuzzy Sets.

Let G be a subset of points of a Euclidian SpaceRn. Intuitively G is a Fuzzy
set if for each of its elements we associate a membership degree. Formally a Fuzzy
SubsetG of Ω, is a non empty subset(x, u(x)), x ∈ Ω of Ω × [0, 1] for some function
u : R → [0, 1]. This function is namedmembership function. The subset of points in
G with non zero membership value is namedsupport ofG. When the support ofG is
finite we can consider the membership function as a vector. So, in this way we can use
indistinguishably the functionu as a Fuzzy Set. Below we show three examples.

1. LetA be a finite subset ofR with m elements.

A = {x1, x2, . . . , xm} (13)

and the membership function defined by

u (x) =

{
1/i, for x = xi, i = 1, 2, . . . ,m;
0 otherwise

Clearly the support of A is the subset{x1, x2, . . . , xN}.
2. LetA be a arbitrary set inR with membership function given by

χA =

{
1for x ∈ A
0for x /∈ A

The above example is a extreme case for which the fuzzy set is an ordinary set
(also named crisp set), that is, all of its elements have membership value equal 1.

3. LetBn (R) then-dimensional ball with radiusR. Define the function

u (x) =

{
1− ‖x‖

R
for x ∈ Bn (R)

0 elsewhere
This is an example of a continuous fuzzy set. Observe that the membership is
1 only for the center of the ball and decrease to0 as x gets closer to the ball
boundary.

The Hausdorff Metric

Suppose that the spaceΩ = RN has a metricd(x, y). Let x be a point inΩ andA
a nonempty subset ofΩ. We define the distance of the pointx to the setA as:

δ(x, A) = inf {d(x, y), y ∈ A} . (14)

The Hausdorff separation of a setB from a setA is defined by

∆(B, A) = sup {d(y, A), y ∈ B} (15)



In general,∆ is not symmetric, that is∆(A, B) 6= ∆(B, A). In order to get a
symmetric one we define the so called Hausdorff distance by

dH (A, B) = max {∆(A, B), ∆(B, A)} (16)

With this distance function(Ω, dH) is a Metric Space. Nevertheless this metric do
not take into account the fuzzy properties of the sets. Formally, we need to define another
metric which will take into account the membership functions. In order to do this we
firstly define some important subsets of a given fuzzy set.

Let u : Rn → I = [0, 1] a membership function.

Definition: For eachα ∈ [0, 1], theα-level set[u]α of a fuzzy setu is the subset
of pointsx ∈ Rn with membership gradeu (x) of a leastα, that is

[u]α = {x ∈ Rn, u (x) ≥ α} . (17)

The support[u]0 of a fuzzy set is then defined as the closure of the union of all its level
sets, that is,

[u]0 =
⋃

α∈[0,1]

[u]α (18)

We consider here only the fuzzy sets which satisfy the property ”u mapsRn onto the
real interval[0, 1], or equivalently,[u]1 6= 0. In addition we consider only membership
functions so that[u]0 is a bounded subset ofRn. Below we present some properties of the
α-level sets (see [Diamond and Kloeden, 1994] to a detailed presentation and proofs).

1. For all0 ≤ α ≤ β ≤ 1
[u]β ⊆ [u]α ⊆ [u]0 (19)

2. [u]α 6= 0,∀α ∈ I
3. [u]α is a compact subset ofRn for all α ∈ I.

Now we are ready to define a fuzzy metric. We define thesupremum metricd∞ onF by

d∞ (u, v) = sup {dH ([u]α , [v]α) , α ∈ I} (20)

for all u, v ∈ F. It is worth to mention that there exist too many different metrics we can
use. The above one was choose due to its simplicity and usefulness. In this work we have
used the supremum metric in order to control stream of grains inΩ.

Appendix B: Walsh Functions and Hadamard Matrices

Walsh functions became important for representation of signals through the super-
position of members of a set of simple functions which are easy to generate and define
[Beauchamp, 1975]. They form an ordered set of rectangular waveforms taking only two
amplitudes values+1 and−1. A simple example of a set of rectangular waveforms are
the Rademacher Functions whcich can be defined as

RAD(n, t) = sign[sin(2nπt)] (21)

where0 ≤ t ≤ 1. Rademacher functions have two argumentsn andt such thatRAD(n, t)
has2n−1 periods of square wave over a normalised time base, or interval[0, 1].

The problem with Rademacher System is that it is not complete in the sense that
any signal can be decomposed, like in a Fourier Series, as a sum (perhaps infinite) of



Rademacher Functions. The simplest complete set of rectangular functions (waveforms in
the context of this work) is the Walsh Set. From the point of view of signal representation,
Walsh functions consist of trains of square pulses (with the allowed states being -1 and
1) such that transitions may only occur at fixed intervals of a unit time step, the initial
state is always 1. In general Walsh functions are defined in a Time Base intervalT and
periodically extended for intervals of lenghtkT, k ∈ Z. They are completely defined by
two parameters, itssequency ordern and its time variablet. It is denotedWAL (n, t),
with n = 0, 1, 2, . . . , N − 1, andN is the order of Walsh Functions defined below. Using
a normalized time variablet/T the Walsh functions can be defined in the interval[0, 1].
In adition, they are symmetrical about the centre and so, when they are defined in the
interval [−1/2, 1/2] they are symmetrical. The even functions are collectivelly named
CAL and the odd onesSAL wich are in certain sense the counterparts of the cosine and
sine trigonometric functions. so, we can write

WAL (2k, t) = CAL (k, t) , k = 1, 2, . . . , N/2. (22)

WAL (2k − 1, t) = SAL (k, t) , k = 1, 2, . . . , N/2. (23)

Both Rademacher and Walsh Sets are orthogonal systems in the same way as
Fourier Systems ofsin andcos functions. Other systems of rectangular functions do exist,
such as Haar and Slant Functions. See reference [Beauchamp, 1975] for more information
and bibliography on this subject.

Walsh functions can be ordered in a number of ways. One of them is the so called
sequency order. The sequencyk of a Walsh function is defined as half the number of zero
crossings in one cycle of the time base. Walsh functions with nonidentical sequencies are
orthogonal and the product of two Walsh functions is also a Walsh function. A way to
generate Walsh functions is through the so calledHadamard Matrixwhen arranged in the
sequency order. A Hadamard matrix of orderN is a type of square matrix whose entries
are only+1 and−1 and such that

HHT = NI (24)

This equation implies that the rows ofH (or the Walsh functions of orderN ) are
orthogonal. In the so callednormal formthe first row and the first column are formed
only by+1. The lowest-order Hadamard matrix is the 2 dimensional matrix

H2 =

[
1 1
1 −1

]
(25)

An important theorem on Hadamard Matrices is stated as:

Theorem: If Hm andHn are matrices of ordersm andn respectively, then their Direct
Product is anH matrix of ordermn.

The proof of this theorem can be founded in [Hall Jr., 1986]. Most of construc-
tions of Hadamard Matrices are based on Direct (Kronecker) Product of two matrices.
The definition of Direct Product as as follows. IfA = (aij) is anm × m matrix and
B = (brs) is anm ×m matrix, then the Direct ProductA ⊗ B is themn ×mn matrix
given by



A⊗B =



a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

...
...

ai1B ai2B . . . aimB
...

...
...

...
am1B am2B . . . ammB


(26)

Using this theorem, higher-order matrices, with dimension2n are easily obtained
by the recursive relationship

HN = HN/2 ⊗H2 (27)

whereN = 2n. Thus, for example,

H4 = H2 ⊗H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (28)

The ordering of Walsh Functions in a Hadamard Matrix is namednatural ordering
and in this case they are also named Hadamard Functions and denoted byHAD(k, t),
wherek = 0, 1, . . . , N . For example, the Hadamard Functions of order 8 are given by

H8 = H4 ⊗H2 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


=



HAD(0, t)
HAD(1, t)
HAD(2, t)
HAD(3, t)
HAD(4, t)
HAD(5, t)
HAD(6, t)
HAD(7, t)


(29)

Hadamard remarked that a necessary condition for a Hadamard matrix to exist is
that n = 1, 2, or a positive multiple of 4.
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