EV: Multilevel Music Knowledge Representation and
Programming

Jesus L. Alvaro!, Eduardo R. Miranda?, and Beatriz Barros'

! Departamento de Lenguajes y Sistemas Informaticos, UNED, Spain
JesusLAlvaro@gmail.com
bbarros@lsi.uned.es
2 Computer Music Research, University of Plymouth, UK
eduardo.miranda@plymouth.ac.uk

Abstract. This paper introduces EV Meta-Model, a new system for
representing musical knowledge for computer-aided composition. It starts
with a brief historical discussion on the fields of composition and sound
synthesis. Then, the practice of musical composition is presented as a
communication process from composers to listeners, where musical messages
go through different representations: from the complex abstractions of
composers and their compositional tools, to the performers and the perceptual
representation of listeners.

EV Meta-Model is proposed as a generic tool for representing any kind of
time-based events that manifest themselves as coherent representations at
different levels, including high-levels of musical abstractions. At the same
time, it is intended to be a dynamic representation system, capable of handling
each element as a "living" variable, and transmitting such dynamic character
to the music that it represents. As examples of its applicability, the paper
presents the Evscore Ontology, the implementation of EVcsound, a tool for the
creation of detailed compositions with flexible temporal representations, and
finally an example of algorithmic composition upon the EV Model.

1. The Representation of Musical Knowledge

A suitable knowledge representation tool (KR) is fundamental for a successful
Artificial Intelligence system development. Brachman explains the KR concept with
these words [Brachman, Levesque, 1985]: “It simply has to do with writing down, in
some language or communicative medium, descriptions or pictures that correspond in
some salient way to the world or a state of the world". The effectiveness of the
intelligent system will depend, to a great extent, on how that KR fits the problem
domain.

It can therefore be established that the first step for the design of an effective
musical composition system is the definition of a musical KR that is appropriated to the
domain and to the creative manipulations within the domain.

Conventional music notation allows for communication between the composer
and the interpreter. But in this case, the compositional knowledge corresponding to the

mental abstractions of the composer is not represented explicitly. The compositional
techniques, their experience, their creative processes and their intentions are not clearly
represented by conventional music notation. In order to study what this compositional
knowledge consists of, an analysis of the composition and the creative processes
involved should be developed.

INTENCION [CONCEPCION [| — onocMIENTO

EMOCION / \ INSPIRACION

| CORRECCION | |

- —.0-. _ABSTRACCION
ANALISIS SINTESIS Imaginacion

ANALISIS]]

PRUEBA [[———— VP EMENTAGION] |

RESULTADO

Composicién
N ———

Figure 1. Subprocesses Cycle in Composition

Composition is comprised of subprocesses in the composer abstraction, such as
conception, abstraction, imagination, implementation, analysis and correction. Figure 1
is a representation of an analysis model of composition processes. It is shown as a
cyclic process of subprocesses. Starting from a voluntary intention or from an emotion,
an element is conceived. Following it is imagined, and abstracted in the context from
both experience and musical knowledge, and also, why not, from inspiration. Once
imagined, the element is concretized, implemented, and tested. Often, the
implementation is not explicit, but a mental visualization of the result is enough.
Sometimes drawings and sketches are used for testing and analysis. Once evaluated, the
affections to the rest of the composition are analyzed. As a consequence, new
corrections are conceived starting a new cycle again. Every musical element or
structure in the composition could be seen as a product of this kind of synthesis-
analysis cycle.

In this analytic search of musical knowledge, several components have been
identified. They include entities, relationships, procedures, strategies, and
metaknowledge. They are explained in table 1. We can conclude that the musical
knowledge comprises aspects, elements, procedures and strategies brought into play by
the composer during the music creation process.

Table 1. Components of Musical Knowledge

Elements and Conceptualization and identification of elements and

entities, abstract objects arranged into ontological classes. These
elements might be considered at different levels, from
atomic elements such as notes, to more and more complex
structures constructed by combinations of simpler elements.
Objects and relationships

Rules, patterns, Relationships between the entities above, creating a
constraints definition of musical language and style.

Intention driven Procedures to develop the musical discourse, the temporal
procedures evolution, the narrative line.

Rules breaks, Exceptions to the rules, patterns, creative innovations at all
originality levels of relationships and structures. Providing liveliness,
originality and freshness to the discourse.

Strategies Based on experience, they constitute a whole heuristic of
composition as a solution search

General Criteria above the composition process, as motivation,

Criteria, Global aesthetics and intention for composing. Some criteria as

Intentions, attention attraction, surprise, equilibrium. Meta-knowledge.

Finality

2. Paradigms in Music Representation

2.1.The score paradigm

The traditional musical score can be considered as a set of symbols arranged in a
temporal succession, representing musical entities such as notes, durations and pitches.
All annotations in the score are symbolic representations of instructions indicating what
the interpreters should do in order to play the music. In this sense, the score is regarded
as a good representation for the performance of music. One could hardly consider
musical scores as a comprehensive KR method because information about the
composition itself has to be deduced by means of an objective analysis of the score or
obtained through subjective interpretation that is part of the listening process.

Being the performance instructions specific to different types of musical
instrument, the composition is not completely defined without the specification of the
instruments and the contribution of the interpreters. Therefore, attaching the
corresponding orchestra completes the definition of a composition. Considered from
the point of view of its function, an orchestra could be defined as a sound generator
that has some knowledge about the interpretation of the score and its translation into
acoustic waves. This Orchestra-Score metaphor is implemented in numerous sound
synthesis systems, such as MusicV and its descendants Csound [Vercoe, 1994], CLM
[Schottstaedt, 1994] and a few others. In Csound, for example, the composition is split
into the score file (.sco) and the orchestra file (.orc).

2.2.The unit generator (UG) paradigm

The architecture of the first analog synthesizers has greatly influenced the development
of sound synthesis systems. Those machines required the physical interconnection of
small operating units called unit generators (UG). By means of the combination of
UGs, multiple architectures with different performance could be assembled.

This philosophy has been traditionally applied in numerous systems for musical
composition and sound synthesis. For example, in Csound instruments are programmed
using variables to connect basic op-codes building instruments as more complex
operating elements. In CLM and Nyquist [Dannenberg, 1997] the interconnection of
UGs is defined using the LISP language, and in some other systems, such as PD
[Puckette, 1997], these connections are done by means of a graphical interface.

From a point of view of KR, those structures could be represented as elements
of the type ‘operating-unit-in the-time-domain’, defined as an interconnection of
simpler units. It is interesting to note, however, that the UG paradigm allows for the
definition of high-level structures starting from similar structures in a lower level.

2.3.The MIDI paradigm

MIDI standardization has unquestionably greatly influenced the development of
computer music. In music representation, it considers that music is performed with a
keyboard. This simplification provides the possibility of representing every musical
note just with a number associated with the key being pressed, the pressing velocity,
and when and for how long it is pressed. MIDI has been useful as a music
representation for the last decades, but it cannot be considered as a complete
representation system, as it does not include any information concerning the orchestra.
Although some attempts have been made to standardize some orchestras (e.g., General
MIDI), the impossibility of unifying MIDI players and it low resolution, prevent MIDI
from being an efficient tool for representing musical sound. However, it provides the
possibility of developing systems with low computational costs. Within algorithmic
composition, systems such as Common Music (CM) [Taube, 2004] or Symbolic
Composer (SCOM) [Stone, 1997] are examples of MIDI-based systems implemented
in LISP.

3. From Composer To Listener

We consider the musical phenomenon as a communication process starting from the
abstractions and emotions of the composer towards the ear of the listeners. Figure 2
shows the different representations that musical messages go through from the abstract
world level, down to the acoustic level. The acoustic level can be reached through two
possible ways.

In the traditional way, a human interpreter plays the conventional score found in
the notation level. Composers write the score from mental abstractions. Usually,
compilation does not take place directly, but sketches, scripts, plan drawings, drafts and
many other methods are used. This is a long elaboration process where composers
repeatedly go back to higher levels to perform adjustments and make finer
conceptualizations of their abstractions. It is an iterative and feedback debugging

process, where many different paths are tried out and their results evaluated. From the
point of view of Artificial Intelligence, this process could be considered as heuristic
searches for the satisfaction of self-imposed constraints.

composer

Composer Abstract World

.

Music Entities Representation

i Text Editor
Text Editor

Algorithmic Event Generation

Metalevel

Sequencer

Jadedgousd

Notation
Application

4

% o Event World Cem) Csco)
E3 l Csound i Notation
-8 -~ CLM Notation
o Notation World Sound
| Module
— s * Human Performer
% Audio World @
- l Audio Player
he]
5
o Acoustic World @’
%] :

Ear

14

Figure 2. Levels of representation in musical communication

In conclusion, it is a time consuming work developed at levels above the level
of the interpretation languages.

The other way of producing sound comes from a stratum immediately above,
the audio world. A speaker, reproducing audio samples, now emits sound. Sound files

are created based on performance events at the interpretation level like MIDI, Csound .
sco or any other event list created by the composer.

3.1.The metalevel paradigm

The interactive composition process described for the creation of the score is similarly
applicable in this case. The metalevel is not seen here just as a layer in the levels of
structure, but as a stratified zone capable of supporting different architectures. In that
area, we could place the following:

* Newell’s "knowledge level" [Newell-1982], corresponding to the symbolic level of the
score, where the musical entities of score are situated.

* Conceptualizations of musical elements in the dimensions of time and form, not
directly represented in the score, such as motives, sequences, form structures and
their relationships.

+ Extra-score conceptualizations in the spectral or pitch dimension, such as intervals,
chords, harmonic elements, tonalities and so on.

* New "musical meta-objects" at closer to composer levels.

* Elements and procedures of algorithmic musical generation.

The metalevel is an attractive area for the development of compositional tools.
It is, however, necessary to use an efficient KR that is flexible and able to cope with
new entities at several levels, and which can integrate new musical elements and
structures created by the composer.

Music created with computers is often regarded by the general public as
mechanical and lifeless. Note that in conventional music communication, both the
composer and the interpreter contribute their human dimension to the music, In this
case, the final sound carries creative contributions and “beautiful imperfections”, which
manifest the richness and liveliness of its human origin. This is a target not to be
forgotten when designing a representation system for musical composition.

4. EV Meta-Model: a Multilevel Music Representation

EV Meta-Model is proposed as a KR for elements in time at different levels. One of the key
points of this approach is its simplicity. Figure 3 shows the core of our ontology, consisting on
three main classes: the event, the parameter and the dynamic object. The definition of the
classes is given as follows (in LISP notation):

(define-Class EVENT :is-a evclass

:slots ((start-position :type real)
(length :type real)
(parameters :multiple list :type parameter)
(events :multiple list :type event)
(position-function :type function)))

(define-Class PARAMETER :is-a evclass
:slots ((name :type string)
(value :type dynamic-object)))

(define-Class DYNAMIC-OBJECT :1is-a evclass
:slots ((type :doc "Type of the out value")
out :type t)
dyn-function :type function)
dyn-arguments :multiple list :type DYNAMIC-OBJECT)
status-memory :type t :doc "State memory")

))

1ist type

(
(
(
(

4 EVENT
start-position (real)
length (real)
parameters (list parameter) [list type PARAMETER list type
events (list-ex&m‘.)_/ name (string)
\ position-function (function) value (dynamic-object) J—2P& DYNAMIC-OBJECT N
type
out (t)
dyn-function (function)
dyn-arguments (li: i ect)
ke status-memory (t) .

Figure 3. Ontological Core of EV Meta-Model.

4.1.The event class

This class comprises any kind of element that can be positioned in time. It is the central
class of the ontology and it includes five main slots:

* Start-position 1is the time position of the event, the time position where it starts.

* Length indicates the active time, or the duration of the event.

* Parameters is a list of the properties of an object. Those properties (or parameters of
a musical event) are instances of the class "parameter". Each parameter includes a
parameter name and a dynamic value of type "Dynamic-Object”, which is described
in next paragraph.

Events is the most important slot. It makes recursivity possible. Therefore it
provides a multiple level representation capability. It contains a list of new events
sharing the same object structure; it is a list of instances of its same class event. A
"child-event" could itself contain new "child-events" and so on, thus creating a rich
recurrent data tree from a single class. This concept drastically simplifies the
definition of time structures at different levels and their relationships. A general
behaviour could also be defined by generic functions. It is, therefore, a flexible
ontological skeleton capable of representing almost any musical element as an
instance of the class event. It keeps coherence from the notes level up to higher
abstraction levels.

Position-Function is another interesting feature that makes this approach unique.
Each event could have its own time magnitude and scale with a dedicated handling.
This means that there is an internal time inside the event, defined by its Position-
Function, and a different time perception from the outside, which corresponds to the
time organization of its "mother-event". That timing flexibility multiplies the
creative possibilities and, at the same time, solves several practical problems. Let's
see some examples:

1. Let us consider a practical example in film scoring. A film would be seen as an
instance of the class event, using SMPTE timecode as time organization. A musical
cue for the score is an event that begins at a specific timecode and ends at another,
but it uses bars and meter from traditional notation for its internal time organization.
All internal events in this cue, such as notes, are defined within this bar
organization. In this example, the musical cue owns a Position-Function or time
function called "tempo", which translates those time magnitudes. In live
performance, the conductor will take the control of that Position-Function. The
following code shows a possible implementation by subclass definitions:

(defIne-Class FILM :is-a event
:slots ((position-function :default #'smptelreal)
(events :multiple list :type MUSIC-CUE)
))
(defIne-Class MUSIC-CUE :is-a event
:slots ((master-track :type master-track)
(position-function :default #'meterZ2smpte)
(events :multiple list :type MUSIC-SEGMENT)))
(defIne-Class MUSIC-SEGMENT :is-a event)

2. A previously defined musical motive could be used at several moments of the piece
at different speeds, by augmentation or diminution: a generalization of the traditional
counterpoint procedure. For example, in order to decrease the speed by two, it is
enough to provide the function #double as position-function. If we use the function
#'half we would get the counterpoint diminution.

3. Once the piece is completed, its timing could be reshaped, enlarging and shortening
some sections by modifying the main position-function. In film scoring, it could be
useful in many situations. Let us consider the last-minute director's change in the
edition of an already orchestrated scene; some small adjustments in the position
function could be enough to fit the new timing.

4.2.Dynamic Objects

The parameter value of the event is not static. It is considered to be a dynamic object
with an evolving value. Data is dynamic during the event, so a parameter could be
considered as "living" entities. Several possibilities are available for defining the
evolution of the dynamic object. In order to simplify definitions, a set of elementary
dynamic objects and an intuitive syntax to describe combinations was developed
inspired by CYBIL [Piché, Burton, 1995]. Complex objects built from simpler ones
will keep the dynamic character. The set of elementary units includes /ines between an
initial and a final value (the beginning and ending of the event), logarithm curves,
random values within a range, sequences of values, functions, memory provided
generators, etc. Recursivity is again present here because arguments included in the
definition are also considered as instances of dynamic objects. In addition, dynamic
objects are conceived with memory capability.

Both dynamic arguments and memory, provides the possibility of creating very
complex dynamic objects, such as evolving systems, cellular automata and so forth.

4.3.Generator events

EV Meta-Model also provides the events with behavior. A subclass can be defined from
the main class event with a specific behaviour. Generators are a special subclass type,
which are useful for the abstraction of musical forms. A generator is an event that
develops itself into new events of a particular subtype. From a musical point of view,
generators provide the possibility of compiling a "musical piece" event instance into a
score of interpretation events iteratively.

5. EVScore Ontology

Figure 4 shows the EVScore Ontology, an example based upon our proposal. It is a
traditional notation compatible representation, which can integrate higher level music
elements. Every class in this ontology is a descendant of the core class event, so they
inherit all the properties of the Meta-Model.

Figure. 4. EVScore Ontology

SCORE
is-a . listtype | events (list score-track)
SCORE-TRACK

position-function #MASTER-TRACK
list type events (list part)
is-a et title (string)
SCORE-PART

composer (string)
>

EVSEQUENCE

SCORE-LYRICS e (siring)
isa

SCORE-ASSIGN

SCORE-DYNAMICS SCORE-TECHNIQUE

SCOREPITCH . SCORE-NOTE

SINGLE-SCOREPITCH 4%19"— content (list single-scorepitch)
- st type
notenumber (integer) complex-type (pitch-complex-type)

alteration (integer) aux-content (list single-scorepitch)

n

‘% ote-symbols (list note-symbol) note-symbols (list note-symbol)
NOTE-SYMBOL list type

6. A Test Implementation: EVCsound

In this section we present a practical application using the EV Meta-Model: EVcsound.
Less than 100 lines of code were necessary for this implementation, as 95% of the
requirements were already available in the EV Meta-Model.

EVcsound compiles a composition-event into a Csound .sco score. Every
csound-event in the .sco file is associated with an instrument of the .orc file by an
identifier and it consists of a list of numeric figures corresponding to parameters p4 to
pn for that instrument (p1 is the instrument ID, p2 the start position and p3 the duration
of the event). The key point of the system is the sampler-generator type event, which
samples the dynamic-objects along its development process and builds up every
csound-event with such figures.

The code bellow is a simple example with two events of type sampler-
generator, which develops itself into csound-events for the instrument referenced by

its name.

(evcsound ' (0 20 superfm

(period (ran f .2 2)

amplitud-db (ran £ (1i £ 50 70)
(11 £ 60 80))
duration (op #'/ 300 (pa amplitud-db))
pan (ran f (lo £ O .5) (lo £ 0 .99))
pitch (op #'* 55 (ran 1 6 16))
reverb-send (lo £ .07 .7)
0 25 reverb-st
(reverb-time 7))))

The first generator, lasting for 20 seconds, develops into multiple csound-events
for an instrument named "superfm", with a random sampling period between 0.2 and 2
seconds, a random amplitude in the evolving range between 50-60 dB and 70-80 dB, a
random pan evolving from closed L to a range between C and R, a duration inversely
proportional to amplitude between 3 and 8 seconds and a randomly chosen harmonic
pitch between the 6th and the 16th harmonics of A1 (55Hz). The second event, lasting

for 25 seconds, activates the reverb instrument. This example presents just one step
down in the hierarchy; a compilation from such a high level can be easily achieved by
defining recursive events.

7. An Algorithmic Composition Example

As a last example of applicability of the EV framework, a simple example of
algorithmic composition of a melody is presented. In this example we also introduce
three new elements of our system: tables, zones and maps.

Tables are used as a new kind of dynamic object. They can store the output of
sequential objects and use them as a linear function. In our example, a random
brownian shape is stored in a table to be used repeatedly.

Zone 1is a particular subclass of generator event inside which, a detailed time
structure is arranged into zones. Categories for every zone in the structure are
simultaneously defined, so it is easy to compare among them and set a desired
evolution for that category across the zones. All category definitions are interpreted
within the zone structure, so it is possible to address the desired zone by writing
according structures in the definition. If just one dynamic object is provided, it is
applied for the entire event. If a nested list is provided, each object is associated with
the "same level and order" zone element. The zone-event generator can be developed
into child events according with the defined parameters in zones.

Maps are dynamic objects that allow you to use symbol lists for representing
recurrent structures of data in a simpler manner. Symbols are easily combined and
manipulated to define a sequence of elements generating a musical form. This concept
can be extended by the use of grammars to generate complex and rich forms. In the
example below, they are defined by the dynamic function mp.

(deftable tl1 256 (br 0 1 :seed .42723))

(define-zone-event my-melody
tzone '((a b bc) (abcboca)
:ryth (mp zone ' ("+—-+4+" "+-4+-" "+--=-"T))
:shape (mp '(a b) (list tl (retrograde tl)))
ttessitura (tab tl :min 0 :max 12)
cambitus (11 1 5 8)
:pitchclass 'glydian
:stepOpitch 'g4

The example code above defines a melody as a zone-event. In this subclass, the
melody generation is developed by the algorithm represented in figure 5: A melody
shape is obtained by placing a shapes structure within a defined tessitura and ambitus.
That melody shape is then sampled by a rhythm and step quantified in some intelligent
way. The resulting step values are then converted to pitches by mapping them into a
given pitchclass and register.

In our example, rhythm is defined as the expansion of the zone structure, by
using a figure map. The combination of zone and rhythm also define the time map or
the duration of every segment in the musical form. Pitch is obtained by mapping the
sampled and quantified shape, into the lydian scale on G and using the reference of
pitch G4 as step number 0.

ZONE Structure Rhythm ZONE-EVENT
(Rhythm map) cells

MAPPER
P S Tessiture Ambitus G StepOPitch
i | PitchClass
‘ |
| |

cells

Shape Tessiture Ambitus PitchClass
cells cells cells cells

StepOPitch m

. — oy Y » N
~Unscaled Shape ™1 - “Tessiture™, -~ Ambitus ™, " PitchClass ™ - SlepOPitch ™
]

\
. Events . \._Events . 'j Events_. \\E_vfrris/‘ Events

o S ey G Intelligent
! Rhythm ™, i Shape Events ' QUANTIFIER
. Events :r Melody Shape
/"!"\
W | Steps i

2 Pitch
Sy MAPPER
1 Pitches |

Note
CONFORMER

Figure. 5. Melody Generation Algorithm

One of the important features of zone-events is the coherence of the music form
and it applicability to several categories independently. That is, all categories can share
time structure but they manage their time relationships in an independent way.

1
; P — I | [—— I - T 1y
I
AJ -] |]] |
;) m— I

Figure. 6. Generated Melody

Figure 6 represents the melody generated by the code above. The presented
code is just an example of the combination of the algorithm over the EV Model. It is
not the purpose of this section to give a detailed approach to algorithm composition
inside EV, but just to provide a simple musical example of its successful support for
algorithmic composition.

8. Conclusions

The creative possibilities of a musical system are determined by the underlying
knowledge representation and the paradigm in which it emerges.

Although the traditional score is a good representation for performance, actual
musical knowledge extends far beyond the traditional musical score. Musical
knowledge includes elements and entities, rules and constrains, intention driven
procedures and creative breaks of patterns and rules. Musical representation could be
stratified into levels spanning from the composer abstraction to the acoustic
representation. We are interested in addressing the zone above performance or
metalevel. A successful knowledge representation for composition should be flexible
and simple, but still providing coherent representation at different levels.

EV Meta-Model emerges in this research enquire as an intuitive multilevel
music representation system. Its design is based on both structure and function
recursivity, making it appropriate in multiple levels and magnitudes. EV Meta-Model
provides a dynamic data structure, being able to successfully implement musical ideas
efficiently. This approach introduces innovative aspects to music computing research.
One of the key points in its design is the unification of all musical entities in a single
data type, designed specially for music.

9. References
Brachman, R.J. and Levesque, H.J. (Editor) (1985). "Readings in Knowledge

Representation", San Mateo, CA: Morgan Kaufmann.

Dannenberg, R.B. (1997). "Machine tongues XIX: Nyquist, a language for composition
and sound synthesis", Computer Music Journal, 21(3):50-60.

Newell, A. (1982). "The knowledge level", Artificial Intelligence, 18(1):82-127.
Piché, J. and Burton, A. (1995) “CYBIL Language” Université de Montréal
http://emu.music.ufl.edu/cecilia/cybil.html

Puckette, M. (1997). "Pure Data", Proceedings of ICMC, Thessaloniki, Greece, pp
224-2217.

Schottstaedt, B. (1994). "CLM: Music V Meets Common Lisp", Computer Music
Journal, 18(2): pp 30-37.

Stone, P. (1997) “Symbolic Composer” http://www.symboliccomposer.com
Taube, H. K. (2004) “Notes from the Metalevel”, Andover UK: Swets & Zeitlinger.

Vercoe, B.L. (1994). Csound: A Manual for the Audio-Processing System, Boston, MA:
MIT Media Lab.

