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Abstract. Pitch Class Profiles (PCP) [Fujishima 1999] are largely used for all 

applications involving harmonic content. Although the main steps of the PCP 

calculation are generally equal over all the scientific literature, some 

implementation details may vary, specially the impact of the distance between 

the frequency of the FFT bins and their closest note. This paper compares 6 

ways of using this distance to weight the contribution of each FFT bin in the 

final PCP vector. We present the results of the 6 computed PCPs when used in 

a chord recognizer, a tonality estimator and a key detector. 

1. Introduction 

Pitch Class Profiles (PCP) are vectors of low-level instantaneous features, representing 

the intensity of each of the twelve semitones of the tonal scale. They are largely used in 

all applications involving harmonic content, especially chord recognizers [Yoshioka et 

al. (2004)], tonality estimators [Gómez and Herrera 2004a] and key detectors [Pauws 

2004]. The main advantages of the PCPs are the simplicity of calculation, the concision 

of the harmonic information and the power to unify various dispositions of a single 

chord class. Although the main steps of the PCP calculation are very similar over all the 

scientific literature, some implementation details may vary. Among them, it is especially 

imprecise how the distance from each FFT bin to its closest note may contribute to the 

quality of PCP. This paper intends to contribute to the discussion on the subject, 

comparing 6 functions (uniform, discrete, linear, anti-quadratic, exponential, and 

gaussian) using the above mentioned distance to change the PCP computation. To test 

the PCPs, we have implemented a chord recognizer, a tonality estimator, and a key 

detection system, as described in main publications: given a labeled database of sound 

recordings, the respective PCPs are computed, and a classification algorithm, such as k-

nearest neighbors [Mitchell 1997] or hidden markov models [Sheh and Ellis 2003] is 

used. We assume that the higher the quality of a classifier using a specific PCP 

calculation method, the greater the precision of the PCP information. In other words, the 

number of correctly classified instances may serve as a comparative measure of 

precision for the PCP vectors, as illustrated in the end of this paper. 

Next section describes how to compute the PCP vectors. Section 3 exposes the 6 

proposed functions for weighting by distance. Section 4 explains the experiment in more 

details, the used datasets and the applied methodology. Section 5 presents the absolute 

and relative results, and section 6 draws some conclusions and future work. 



  

2. PCP Computation 

PCP vectors are computed by mapping each frequency bin of the spectrum to a pitch 

class (one of the 12 notes of the tonal scale). Figure 1 illustrates the main steps in the 

PCP computation. The sound in Figure 1a is converted to the frequency domain by 

means of some Fourier-Transform (FFT) [Orfanidis, S. 1995]. Each FFT bin is mapped 

to its closest note (e.g. FFT bins corresponding to frequencies like 433 Hz, 438 Hz, or 

443 Hz are mapped to the A at 440 Hz) (see Equation 1). One may see such mapping as 

the division of the spectrum into regions, as shown in Figure 1c. Then, the amplitudes 

inside each region are summed up and divided by the number of bins inside the region, 

resulting in a histogram as in Figure 1d (see Equation 2). Finally, the histogram is 

folded, collapsing pure tones of the same pitch class, despite the octave, to the same 

chroma bin, resulting in a 12-sized vector, where each index represents the intensity of 

one note. 

 

Figure 1. PCP computation steps. 

Formally, we can formulate the PCP as in equation 1 [Sheh and Ellis 2003]. N is the 

number of samples in the sound (or the number of bins the FFT), k is a bin in the FFT 

(where 0 ≤ k ≤ N-1), fref is the reference frequency corresponding to PCP[0], and fsr is 

the sampling rate. Normally, the value of each PCP element is calculated by summing 

the magnitude of all frequency bins that correspond to a particular pitch class (i.e. p = 0, 

1, …, 12), as shown in Equation 2 [Sheh and Ellis 2003]. 

p(k) = 12 � log2(k/N � fsr/fref)� �mod 12  

Equation 1. Mapping from frequency bins to PCP 
bins. 

PCP p[ ] =
∑

k:p(k)=p

X k[ ]| |2

 

Equation 2. Calculation of the 
values of the PCP elements. 

 

Figure 2. Distance between the frequency of the FFT bin (Hzbin) and the 
frequency of its closest note (Hznote). 



  

However, as in most cases the frequencies of the FFT bins do not match the frequency 

of a note, one can imagine that this summation may take into account the distance 

between them (Figure 2). Figure 2b shows the formula of such distance, which is 

proportional to the size of the region. It varies from 0 (the FFT bin has exactly the same 

frequency of a note) to 1 (exactly in the middle of 2 notes). This work intends to 

evaluate the different methods using this distance to weight the summation, in order to 

improve the quality of the classifiers over such PCPs, with regards to precision and 

robustness. 

3. Weighting functions 

We are interested in the possible functions f(distance) (Equation 3) that could be used to 

weight the summation of values inside each region. These functions must be applicable 

for all values in the range 0:1, and must also return values in the range 0:1. For example, 

f(x) = 1/x or f(x) = log(x) would not be allowed since they are not defined for x=0.  

 

Equation 3. Weighted summation using the distance to the closest note. 

We took into consideration 6 functions: uniform, discrete, linear, anti-quadratic, 

exponential, and gaussian. The uniform function returns always 1. It means that the 

distance does not affect the result. This is the simpler and most used method. Discrete 

weighting will only consider the frequencies inside a narrower region (in Figure 3, 

distance must be smaller than 0.2). In the other 4 functions, the weight of the element 

will gradually decrease as the frequency goes farther, but the respective curves have 

different shapes. The graphs of these functions are shown in Figure 3, as well as their 

formula.  

 

Figure 3. Weighting functions (uniform, discrete, linear, anti-quadratic, 
exponential, and gaussian). 

4. Chord Recognition, Tonality Estimation, Root Detection 

In order to evaluate the different weighting functions, we re-implemented some 

applications using PCP: a chord recognizer, a tonality estimator, and a key detector. All 

of them share the same architecture: a database of sound recordings is labeled with the 

expected class for each example. In the case of the chord recognizer, the class is the 

expected chord (key and type); for the tonality estimator, the expected tonality (key and 



  

mode); for the key detector, just the key. Then, the PCP of each example is calculated, 

and used as input to some machine learning algorithm [Mitchell 1997] in order to 

automatically generalize a classifier. In other words, these algorithms try to 

automatically learn from the examples the patterns of the PCPs of each chord, so it will 

be capable to give answers to new examples.  

As suggested by [Gómez and Herrera 2004b], we used a KNN classifier over the PCPs 

of the sound recordings. The data was taken from D’accord Guitar Chord Database 

[Cabral et al. 2001], a guitar midi based chord database. Each midi chord was rendered 

into a wav file using Timidity++ and a free nylon guitar patch. The richness of the 

symbolic information present (chord root, type, set of notes, key, position, fingers, etc.) 

allowed us to automatically label the data and create some databases. The first one 

(MajMin) is a tonality estimator-like database, restricted to deal only with Amaj and 

Amin chords. The second one (ChordC) constrained the root to be C, trying to 

automatically learn to classify the type (Maj, Min, Dom7, Min7, Dim). The third one 

(Root) tried to determine the root of a chord. The forth one (Chord) is the chord 

recognizer. It tries to learn what is the chord (i.e. which root and type simultaneously). 

The fifth one (RealTest) is the same chord recognizer, but tested with real sound 

recordings, instead of synthetic sounds. 80% of each database was settled on as the 

training dataset and 20% as the testing dataset. 

Table 1. The databases corresponding to the 5 experiments. 

Database Root Types 

MajMin Fix (A) Maj, Min 

ChordC Fix(C) Maj, Min, Dom7, Min7, Dim 

Root Variable (C, C#, …, B) Fix 

Chord Variable (C, C#, …, B) Maj, Min, Dom7, Min7, Dim 

RealTest Variable (C, C#, …, B) Maj, Min, Dom7, Min7, Dim 

5. Results and Discussion 

Table 2 and Figure 4 show the results of the classifiers by weighting function and by 

experiment. For the first, trivial, problem of separating the major and minor chords 

(with a synthetic database of fix root chords), all weighting functions worked 

satisfactorily. For the second experiment, such of finding the chord type, the simple 

discrete weighting surprisingly surpassed all others. For the third experiment, such of 

finding the root of a chord, regardless of its type, the exponential and gaussian worked 

slightly better than the others. For the fourth problem, such of chord recognition (the 

one we were most interested in), all but the uniform function got close values. Finally, 

the last experiment, dealing with the same problem of chord recognition but tested with 

a dataset of recorded audio, showed the most discrepant results. In fact, real recordings 

may have differences in tuning, which affect significantly the precision of the 

algorithms, especially those that abruptly increase or decrease, such as the discrete and 

gaussian functions. These functions leak in robustness, since they are extremely 

dependent to a good tuning. 

On the other hand, a comparative analysis shows that a part from the dependency to the 

quality of the tuning, the weighting functions do not present significant disparities. 

Figure 5 shows such an analysis, in which the results of each experiment are 

proportional (i.e. each value is divided by the maximum). We can see, for example, that 



  

the simpler and normally worst solution (uniform) is always at least 90% as good as any 

other method. 

Table 2. Results of the classifiers using the different weighting functions in 
each experiment. 

Name MajMin ChordC Root Chord RealTest 

Uniform 100,00 % 84,85 % 73,74 % 71,35 % 65,38 % 

Discrete 100,00 % 93,94 % 78,51 % 77,45 % 34,62 % 

Linear 100,00 % 84,85 % 77,98 % 76,39 % 69,23 % 

Anti-Quadratic 100,00 % 84,85 % 77,72 % 76,39 % 65,38 % 

Exponential 100,00 % 87,88 % 80,37 % 79,31 % 61,54 % 

Gaussian 100,00 % 87,88 % 80,11 % 79,31 % 42,31 % 

 

Figure 4. Results of the classifiers using the different weighting functions in 
each experiment.  

 

Figure 5. Comparative results (each value is divided by the maximum value in 
the experiment). 

6. Conclusions and Future Work 

Given the results, we can draw a few conclusions: 1) the weighting functions do not 

affect significantly the quality of the PCP; 2) discrete and gaussian weightings are not 

robust; 3) there is no absolute “winner”. Nevertheless, Table 3 suggests the use of some 

functions, depending on the interest of the developer. If he wants a simple solution, no 

weighting (uniform) works satisfactorily. Otherwise, the linear, discrete, exponential, 



  

and gaussian works a little better. Additionally, if the tuning of the sound samples is not 

guaranteed, he should better choose the linear weighting. 

Table 3. Best weighting function, given the interests of the developer. 

 Robust Good tuning guaranteed 

Light, simple Uniform Discrete 

Efficient Linear Discrete/Exponential 

Some improvements can be done in future works, specially the conversion of the 

datasets to real recordings. The addition of hybrid methods, such as the discrete+linear, 

would also be interesting. Finally, the comparison with other existent variations of PCP 

extraction algorithms is strongly desirable, in order to delineate a standard, well defined 

algorithm. 
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