
Analytical Features to Extract Harmonic or Rhythmic
Information

Giordano Cabral1, Jean-Pierre Briot1, Sergio Krakowski2, Luiz Velho2,
François Pachet3, Pierre Roy3

1Laboratoire d’Informatique de Paris 6 (LIP6), Université Paris 6 - CNRS
104 avenue du Président Kennedy, 75016 Paris, France

2Instituto Nacional de Matemática Pura e Aplicada (IMPA)
 Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brazil

3SONY Computer Science Lab
6 rue Amyot, 75005 Paris, France

{Giordano.Cabral,Jean-Pierre.Briot}@lip6.fr,
{ s k r a k o , l v e l h o } @ v i s g r a f . i m p a . b r , { p a c h e t , r o y } @ c s l . s o n y . f r

Abstract. This work aims to evaluate the effectiveness of EDS as a tool to
automatically extract descriptors for real-world problems, such as melody
extraction, chord recognition, and sound classification, comparing its
performance and development time to traditional approaches. Each of these
problems constitutes a case study, and along with the comparative results we
present some remarks about the descriptor extraction procedure.

1. Introduction
The last few years have witnessed an effort in rendering the descriptor extraction process
automatic, in order to 1) improve (current) features efficiency; 2) create new features in an
easier and faster way; and 3) allow non-signal processing experts to create sound
descriptors. In this scenario, the Extractor Discovery System (EDS) [Pachet and Roy
2007] a very promising option, addressing the automation of the whole process. It started
to be developed in 2003, and has been continuously improved ever since.

In a previous work [Cabral et al. 2005] we explored the power of EDS to find harmonic
descriptors (chord recognizers) in a completely automated way. That work tried to
simulate the use of the system by a non-expert user. The current work extends the
previous one, by evaluating EDS capacity to find good descriptors for some well-known
and usual problems, namely the f0 estimation, chord recognition, and percussive sound
classification whereas EDS is operated by an expert.

The experiments presented in this paper intend to provide some examples of employing
EDS in real-world situations. These examples should be indicative of the possibility of
automatically extracting features, revealing its strengths and weaknesses. In a simple way,
we are trying to answer the following question “supposing someone wants to develop an
application such as a chord recognizer, a melody extractor, an accompaniment system, or
whatever other tool that needs to classify sound fragments, would it be interesting to use
an automatic descriptor extraction tool like EDS instead of traditional techniques”?

We try to answer this question by presenting three case studies, which actually make
part of broader systems being developed by Sergio Krakowski at the VISGRAF/IMPA
group in Rio de Janeiro, Brazil, and Giordano Cabral at LIP6 and Sony CSL in Paris, both
advised by Francois Pachet. More particularly, we are interested in transcribing melody,
harmony, and rhythm of songs, with the purpose of building interactive systems.

The transcription of musical information usually relies on a general approach: to
perform a short-term analysis on a sliding window, and track the result over time using
some kind of dynamic modeling such as HMM's or GMM's [Pachet and Briot 2004]

153

(Figure 1). This analysis typically means the computation of a feature which is pertinent to
the problem (e.g. the autocorrelation of the signal, or the pitch class profile).

Figure 1 – short-term analysis of a signal.
Nevertheless, those features could hypothetically be automatically discovered by a

descriptor extractor, such as EDS. That’s precisely the goal of the present work, which
compares the performance and development time of EDS to those of traditional
approaches.
The next 3 sections respectively describe the 3 problems we are investigating, and the main
features used for their analysis. Section 5 gives further detail on how EDS works.
Sections 6, 7, and 8 relate the 3 case studies: f0 estimation, chord recognition, and
percussive sound classification, presenting the methodology adopted in both approaches
as well as the results that were found. Finally, section 9 makes some overall comments and
remarks, and section 10 presents the conclusion and future work.

2. F0 Estimation
The problem of estimating the fundamental frequency of a sound is well known by the
scientific community. Among the applications of this problem we can cite automatic
melody transcription and real time accompaniment. There are many f0 estimation
techniques (and even different taxonomies) available in the literature. However, one general
classification is clearly observed: the distinction between approaches dealing with the
information on the time domain from others based on the frequency domain.

Time-based techniques rely on the high correlation of a signal with this same signal
shifted by particular values. These values are usually called lags, each one referring to a
respective frequency. The correlation is computed for a set of candidate lags, and the
highest correlation is taken as 1/f0 [Klapuri 2004]. One variation called AMDF [Pachet
and Briot 2004] is claimed to be more robust once it redefines the correlation as the
difference between the original signal and the shifted one, instead of their multiplication.
Alternatively, the cepstrum can be used as a replacement for the correlation function
[Klapuri 2004].

Frequency-based techniques analyses the signal transformed into the frequency-
domain. Whenever a quasi-periodic signal have period T, it can be considered periodic
with period nT. This behavior can be seen in the frequency domain by a regularity of the
peaks found in the DFT. Thus, a probability function of the fundamental candidates is
made by convolving the resultant DFT with comb functions aligned to the multiples of the
candidate frequency. An interesting variation of this technique was suggested by [Kunieda
1996]. It is considered as of spectral-interval type and seeks for periods in the frequency
domain by performing a sort of autocorrelation of the spectrum. Other variations exist,
notably the ones based on the human auditory model [Cheveigné and Kawahara 1999].
In general lines, the frequency-based approach is usually more appropriate to higher
register signals, since the DFT has better resolution around higher frequencies, while time-
based estimators are more appropriate to lower ones, since more distant periods provide
greater precision in the correlation [Klapuri 2004]. Ideally, different methods could be
merged in order to achieve robustness, maintaining a good performance independently on
the register.

154

3. Chord Recognition
The ability of recognizing chords is important for many applications, such as interactive
musical systems, content-based musical information retrieval (finding particular examples
or themes in large audio databases), and educational software. Chord recognition means
the transcription of a sound into a chord, which by its turn can also be subdivided, for
example in a root note and a type. Most part of the works involving harmonic content
(chord recognition, chord segmentation, tonality estimation) [Sheh and Ellis 2003][
Yoshioka 2004] use the same core technique (even though slight variations may appear in
the implementation): to compute an harmonic feature, such as the Pitch Class Profile
(PCP) [Fujishima 1999], or the chromagram [Bartsch and Wakefield 2001], and a
subsequent machine learning algorithm to find patterns for each chord class.

PCPs are vectors of low-level instantaneous features, representing the intensity of each
pitch of the tonal scale mapped to a single octave. These vectors are calculated as follows:
1) a music recording is converted to a Fourier Transform representation (Figure 2a to
Figure 2b); 2) the intensity of a pitch is calculated (Figure 2b to Figure 2d) by the
magnitude of the spectral peaks, or by summing the magnitudes of all frequency bins that
are located within the respective frequency band (Figure 2c); 3) The equivalent pitches
from different octaves are summed, producing a vector of 12 values (eventually 24 to deal
with differences in tuning and/or to gain in performance), consequentially unifying various
dispositions of a single chord class (Figure 2e and Figure 2f). For example, one can
expect that the intensities of the frequencies corresponding to the notes C, E and G in the
spectrum of a Cmaj would be greater than the others, independently on the particular
voicing of the chord. The chromagrams follow a different method to be computed, but are
conceptually the same.

Figure 2 - Steps to compute a PCP. The signal (a) is converted t o
Fast-Fourier representation (b); the FFT is divided into regions (c);
the energy of each region is computed (d); these energies are folded
into a 12-note vector (e); the final vector is normalized (f).

The idea behind the use of PCPs for chord recognition is that the PCPs of a chord
follow a pattern, and patterns can be learned from examples. Thus, machine learning
techniques [Mitchell 1997] can be used to generalize a classification model from a given
database of labeled examples, in order to automatically classify new ones. So, for the PCP
of a chord, the system will respond the most probable (or closest) chord class, given the
previously learned examples. The original PCP implementation from Fujishima used a
KNN learner [Fujishima 1999], and more recent works [Gomez and Herrera 2004]
successfully used other machine learning algorithms.

4. Percussive Sound Classification
Percussive sound classification is a vast field in which many techniques have been
suggested but until now no one can be considered standard nor universal. The general
problem is to automatically classify percussive sounds in order to subsequently retrieve
the rhythmic structure or transcribe the rhythmic score. In that way, it can be seen as
analogous to the melody extraction problem, but instead of notes, we are interested in

155

sounds with different timbres. The set of possible timbres can be incredibly high due to
the diversity of instruments, and then solutions vary according to particular
drum/percussion sets and the information one wishes to extract.

Thus, a number of different strategies have been applied to specific problems. In
[Gouyon et al. 2000] the authors addressed the bass/snare drum discrimination, and
eventually considered the automatic extraction of rhythmic structures. For that, they
observed the zero-crossing rate estimation on the decay part of the sound. Another
approach is the source separation as found in [FitzGerald 2004]. The idea is to consider
each sound as made by one or more sources and, by subspace analysis, find the best
sources that model the sounds. Finally we can find an extensive work done by Herrera,
comparing many feature selection methods and classification techniques applied first to
drum kit [Herrera et al. 2002] and afterwards to percussion instruments [Herrera et al.
2003].

5. EDS
The Extractor Discovery System, developed at Sony CSL, is a heuristic-based generic
approach for automatically extracting high-level music descriptors from acoustic signals.
EDS is based on Genetic Programming [Koza 1992], used to build extraction functions as
compositions of basic mathematical and signal processing operators, such as Log,
Variance, FFT, HanningWindow, etc. A specific composition of such operators is called
feature (e.g. Log (Variance (Min (FFT (Hanning (Signal)))))), and a combination of
features forms a descriptor.

Given a database of audio signals with their associated perceptive values, EDS is
capable of generalizing a descriptor. Such descriptor is built by running a genetic search to
find relevant signal processing features matching the description problem, and then
machine learning algorithms to combine those features into a general descriptor model.

The genetic search performed by the system is intended to generate functions that may
eventually be relevant to the problem. The best functions in a population are selected and
iteratively transformed (by means of reproduction, i.e., constant variations, mutations,
and/or cross-overs), respecting a pattern chosen by the user. The default pattern is
!_x(Signal), which means a function presenting any number of operations but a single
value as result (for more information about EDS syntax, look at [Zils and Pachet 2004]).
The populations of functions keep reproducing until no improvement is achieved, or until
the user intervenes. At this point, the best functions are available to be combined. A
selection can be made both manually or automatically. The final step is to choose and
compute a model (linear regression, model trees, knn, locally weighted regression, neural
networks, etc.) that combines all features. As an output, EDS creates an executable file,
which classifies an audio file passed as argument.
In short, the user needs to 1) create the database, in which each recording is labeled with
the correspondent class; 2) write one or more general patterns for the features; 3) launch
the genetic search; 4) select the appropriate features; 5) choose a model to combine the
features. Some of the choices taken in these steps are crucial to the process. They delimit
how the user can interfere in the search for features, as explained next.

5.1. Pattern Choice
The pattern encapsulates the architecture of the feature. They are represented by the output
of the chain of functions to be found. As single values, this output can be a frequency (f),
amplitude (a), time (t), or any of them (x). Additionally, the output can be a relation, such
as time and amplitude (t:a), or frequency and amplitude (f:a). Moreover, a recent
improvement of the system allowed outputs to be a vector of any of the previous types.
The patterns may include intermediate outputs, which will be inputs of the outer function.
Along with these symbols, a *_ or a !_ is placed to express if the user wants to search a
single operator or a sequence of them. At last, the patterns may include specific operators.

156

For example, !_f(f:a(Signal)) means that the signal is initially converted into the frequency
domain (f:a), then some operation is applied to get a frequency as a result (!_f).

5.2. Genetic Search
Given a set of patterns, a genetic search is launched. It means that a population of features
is created, and the capacity of each one to separate the examples in the database is
evaluated. The best features are then selected as seeds to a new population. This process
evolves the features until no improvement is found.

Although the genetic search can be performed fully automatically, the user can supervise
and interfere in the search. This intervention is even desired, since the space of possibilities
is enormous, and heuristics are hard to express in most cases. Therefore, the user can lead
the system through some specific paths by 1) stopping and restarting the search if it is
following a bad path; 2) selecting specific features for future populations; 3) removing
ineffective features from the search. Additionally, the stop condition itself is an important
factor frequently left to the user.

The choice of the population size may also influence the search, since larger populations
may hold a bigger variety of features (which will converge slower), whereas smaller
populations will perform a more in depth (faster) search, (which will be most likely to
terminate at local maxima). At last, the user can optimize features, finding the values for
their arguments which maximize the class separation. For example, the split function
(which divides a signal in sub-signals) has the size of the sub-signals as a parameter.
Depending on the case, a tiny value can be notably better than large values, for example.

5.3. Feature Selection
After many features were found, possibly in different genetic searches, they can be
combined to create the final descriptor (eventually with a single feature). The selection of
which features to combine is left to the user, even if one useful tool is available: the expert
selection picks up the features that are better than a customizable threshold and less
correlated than another customizable threshold. In fact, as [Herrera et al. 2002] shows,
choosing features in a list is as complicated as finding the features themselves, so that is
maybe the point at which the quality of the result is more dependent on the user.

5.4. Descriptor Creation and Evaluation
Finally, in order to create the descriptor, the learning method that will combine the features
must be chosen (normally KNN or GMM). The resultant descriptor is then evaluated on a
test database. The results are presented class by class, along with the precision rates.

Figure 3 – Snapshot of EDS screen givin g the results of a chord
recognition descriptor classified with KNN, and evaluated on the test
database.

6. Case Study One: F0 Estimation
Our first experiment compares the results of EDS with those of two of the most widely
used techniques for the f0 estimation, one in the time-domain, other in the frequency-
domain. In order to evaluate the algorithms, we created a database of 1570 wave files, each
one containing the sound of a note, ranging from A0 to C9. The wave files were rendered

157

from midi files using SoundFonts [Timidity 2006], where each one encapsulated one note
played by one specific melodic instrument.

The two techniques examined were the autocorrelation via AMDF and the filtering of the
spectrum at specific frequencies, both explained in section 2. The autocorrelation feature
was implemented as in [Pachet and Briot 2004], with 100 candidate frequencies starting
from 27.5. The correlation function was defined as the difference between samples, as
shown in the formula below.

Figure 4 – formula of the AMDF autocorrelation function
The second one is called here FPl, and uses a comb filter on the spectrum of the DFT of

the sound (see formula in Figure 5), this filter using the same candidate frequencies as in
the previous example.

Figure 5 – formula of frequency-based FPl function
The result of these functions can be interpreted as probabilities of each candidate to be

the fundamental. As a further step, machine learning algorithms can be used to map the
patterns of these density curves to specific pitch classes. We have implemented these 4
possibilities, called here Pure AMDF, Pure FPl, AMDF+Knn, and FPl+Knn. Machine
learning algorithms could be used as well to combine more than one of these features into
a single solution. We have not implemented this combination, but still calculated its upper
limit, defined as follows: if one of the algorithms gives the good solution, the combined
algorithm will also do it. The results are presented in the Table below:

Table 1. Results of Traditional Techniques for F0 Estimation

Method Precision
Pure AMDF 45.10%
Pure FPl 43.64%
AMDF+Knn 71.51%
FPl+Knn 44.18%
Upper Limit 77.90%

Noticeably the results reflect the deficiency of the techniques in specific ranges. While
the correlation-based works better for low-frequencies, the frequency-based works better
for high-frequencies. The learning phase corrected some misclassifications but still did not
work for the frequency-based solution.

One must notice that, including the research and reading of specialized papers and
books, we took 2 weeks to implement the first solution (Pure AMDF). 1 more day was
necessary for the second solution, and 2 more days for the Knn versions. Altogether, the
experiment took 2 weeks and 4 days (14 working days). Even if this information may not
be rigorously scientific, given that other people with different background, programming
skills, and dedication might perform differently, we find it useful to give an idea of the
order of the time which is needed for its implementation. One must not forget that this is a
part of major systems, and not a problem by itself. The developers are experienced
programmers, with medium level sound processing skills, that devoted 6 hours a day to
this particular problem.
The goal of the experiment is to verify if the automatic extraction can pass the 71.51% rate
of correctly classified instances, hopefully approximate the 77.90%, and ideally pass the
77.90%, as well as to monitor how much time it takes.

158

6.1. Automatic Extraction of F0
The system was taken from scratch, and we performed some searches using the general
patterns: “*_a(x)”, “*_f(x)”, “*_Va(x)”, and “*_Va(*_Va(t:a(x)))”, the more specific
patterns: “PitchBands(*_t:a(x), 120.0)”, “*_Va (PitchBands(*_t:a(x), 120.0)”,
“*_a(Autocorrelation (*_t:a(x)))”, “*_f(Autocorrelation(*_t:a(x)))”, “*_Va
(A u t o c o r r e l a t i o n (* _ t : a (x))) ”, “BarkBands(x, 25.0)”, “C h r o m a (x) ” ,
“*_Va(Chroma(*_t:a(x)))”, “*_Va (SplitOverlap(Autocorrelation(x), 441, 0))”, and the
very specific (optimization) patterns “PitchBands(x, 120.0)” and “Correlation(x,
t:a(x))”.

After 3 days of 12 genetic searches, some of them long and intensive, EDS found over
20 features superior to 70%, even though most of them were extremely correlated. On the
other hand, they were found in different paths (from different patterns), needing more or
less time to be found. We must mention that the correlation-based features scored very
badly (19% at best, against 75% from the frequency-based), indicating some
malfunctioning in the system. Until the present moment, we are not aware if this is a
problem with the genetic search or an error in the operator itself.

We pre-selected 11 features for further evaluation. Many permutations of these features
were tried. We hoped that some features would be complementary to the best one(s),
improving the overall result. Strangely, the more features in the descriptor the worst was its
performance. In fact, weaker features can bring down the quality of the descriptor
depending on the method chosen to combine them, and the best descriptor in fact used
only 1 feature.
1. Derivation (PitchBands (x, 120.0))
2. BarkBands (x, 120.0)
3. Chroma (Derivation (BpFilter (x, 488.0, 26.0)))
4. Integration (Integration (Hamming (Zcr (Split (Autocorrelation (x), 882.0)))))
5. PitchBands (x, 120.0)
6. Derivation (BarkBands (x, 100.0))
7. BarkBands (x, 150.0)
8. Chroma (Hann (BpFilter (x, 488.0, 26.0)))
9. Triangle (SpectralRolloff (Split (Autocorrelation (x), 3307.0)))
10. BarkBands (Abs (Autocorrelation (Autocorrelation (x))), 5.0)
11. SpectralCentroid (Autocorrelation (x))

The Figure 6 shows the final results, comparing them to those from the traditional
algorithms. It is interesting to notice that the expert selection facility actually selected just
the best feature, based on a minimum quality and a maximum correlation among all the
features found. The best descriptor scored 75.08%, using a frequency-based approach.
The experiment lasted 4 _ days.

Figure 6 – Results of the F0 Estimators.

159

7. Case Study Two: Chord Recognition
The final goal of our chord recognizer is to create a guitar accompanier in Brazilian
“bossa nova” style. Consequently, our database has examples of chords played with
nylon guitar. The data was taken from D’accord Guitar Chord Database [Cabral et al.
2001], a guitar midi based chord dataset. The purpose of using it was the richness of its
symbolic information (chord root, type, set of notes, position, fingers, etc.), which was very
useful for labeling the data and validating the results. Each midi chord was rendered into a
wav file using SoundFonts [Timidity 2006] and a free nylon guitar patch. The EDS
database was created according to the information found in D’accord Guitar database. The
database divided the chords into 60 classes, 5 types per root note: major, minor, seventh,
minor seventh and diminished. From 1885 samples, 80% was settled on as the training
dataset and 20% as the testing dataset. We implemented the traditional KNN over Pitch
Class Profile algorithm in order to make a comparison. More details about it can be found
at [Cabral et al. 2005]. Considering research and implementation, we took almost 4 weeks
to implement it.

7.1. Automatic Chord Recognizer
The same databases were loaded in EDS. In our work from 2005, cited above, we found
some middling features after having run the system in a fully automated way. Our strategy
here is to merge new specialized features with the previous ones. In order to find new and
better features, we used specific patterns, appropriate to the problem, mainly:
“ * _ V a (* _ t : a (x)) ”, “c h r o m a (x) ”, “*_Va(PitchBands (*_ t :a (x) , 120)”,
“*_Va(BarkBands(*_t:a(x), 120))” and insistently the pattern: “*_Va(chroma
(*_t:a(x)))”. Grosso modo, we intended to find features which firstly transformed the
signal into meaningful information, like the chroma and the pitchbands do. The chroma
EDS operator must not be confounded with the chromagram or the PCP features. These
are ready-to-use features, more or less complex, comprehending many processing tasks,
including pre and post-processing, while the chroma simply folds each bin from the DFT
into a single octave, storing the average value for each note.

The search was launched over 40 times, but as well as for the F0 Estimation case, the
majority of searches converged to similar results. Notably, the chroma-based features
surpassed their concurrent in part due to their adequacy to the problem, in part due to the
fact that it does not have extra (internal) parameters, such as the PitchBands or the
BarkBands does1. In fact, an internal variable can lead the feature to poor results, even if
they are potentially good, renouncing their persistent evolution.

Finally, we selected 14 features (11 from the previous work plus 3 just discovered). The
3 new features are:
1. Derivation (Power (Chroma (Blackman (x)), -0.3))
2. Log10 (Chroma (Hamming (x)))
3. Hann (PitchBands (x, 120.0))

As in the previous experiment, combining many features did not work better than using
a single one. However, the single best one worked significatively better than the traditional
solution (72.68% against 63.93%), as illustrated in Figure 7. The time needed to finish the
experiment was 11 days.

1 Both the pitchbands and the barkbands have the number of bands as parameter.

160

Figure 7 – confusion matrix and precision rate of EDS (in the left) and
the traditional PCP method (in the right).

8. Case Study Three: Percussive Sound Classification
The pandeiro, a Brazilian variant of the tambourine, is a very important instrument in the
musical tradition of the country. Our aim is to automatically classify the different types of
strokes played on the pandeiro in order to build a reactive system. It is possible to
distinguish among three main categories of sounds: low strokes, slap strokes and jingles
strokes, although they are not completely mutually exclusive (the jingles are usually played
along with the other ones). We have not found any specific work about this instrument in
the scientific literature. However, the strong parallel between this instrument and a drum kit
conducts us to adapt algorithms initially conceived for the last one. The low strokes can be
related to the kick drum due to its low frequency content, around 100 to 250Hz, whereas
the slap strokes have the same strong loudness attack and fast decay characteristics of the
snare drum. Also, the jingles strokes have its spectral information located at higher
frequencies (around 10 to 15 KHz) similar to the hi-hat.

The examples in our database are divided in six classes: two types of low sounds,
named 'tung' and 'ting'; two types of slap sounds, named 'pa' and 'grand pa'; and two
types of jingle sounds, named 'tchi' and the 'tr'. Noticeably, it is much harder to
distinguish between classes in each pair than among the 3 pairs. We recorded several
minutes of pandeiro solo containing all the six types of sounds, using different
microphones and locations in order to preserve some inherent analysis difficulties, such as
variations on the room reverberation and different frequency responses of the equipment.
We built our database by automatically segmenting these recordings via a peak detector
through the derivative of the convolved loudness curve of the signal, as described in
[Pachet and Briot 2004]. The database was split into a training part, with 155 sound
samples, and a testing one, with 288.

In this case study, we used EDS not only to automatically find a descriptor, but to
assess the traditional solutions as well. In fact, a big part of the traditional features are
equivalent to EDS built-in operators, such as the zero-crossing rate (ZCR) proposed by
Gouyon [2000]. Thus, EDS showed to be useful as a try-and-test tool, allowing the user to
instantaneously evaluate these features. Our first experiment was to evaluate if the ZCR,
which Gouyon demonstrated to well discriminate between the kick and the snare drum, is
suitable for the pandeiro. The unconvincing result of 47.0% is shown in detail in Table 2.

Our second experiment used the fact that each class has most of its spectral information
located in a different region. The sum of band-pass filters, the spectral centroid, or any
operator that divides the spectrum in sub-bands seem to be appropriate to capture this
aspect. The result of dividing the spectrum in 20 Bark bands was considerably better
(80.9%), and is also presented in Table 2.

These experiments spent just a couple of minutes to be done. After some manually
created features, we did a first attempt to automatically generate features, by launching the
genetic search with the following patterns: “!_a (x)”, “!_Va (x)”, “!_Va (SplitOverlap
(x, 220.0, 0.1))”, “!_Va (BarkBands (x, 20.0))”, and “!_a (BarkBands (x, 20.0))”. This
search was stopped after 3 populations of 50 features, which took about 30 minutes to be
calculated. We selected the 11 features listed in the next page, resulting in 87.2% of
correctly classified instances, as shown in Table 2 under the designation EDS1.

161

SpectralDecrease(SplitOverlap(x,220.0, 0.1))
Rms (SplitOverlap (x,220.0,0.1))
RHF (SplitOverlap (x,220.0,0.1))
Mean (SplitOverlap (x,220.0,0.1))
SpectralSpread(SplitOverlap (x,220.0,0.1))
SpectralDecrease(SplitOverlap(x,220.0,0.3))
Rms (SplitOverlap(x,220.0,0.3))
Chroma (x)
SpectralDecrease (x)
HFC(Mean(SplitOverlap(x,220.0,0.1)))
Range(SplitOverlap(x,220.0,0.1))

Finally, we left the genetic search run for twelve hours, reaching 618 populations.
Among the great number of features found, we selected the features scoring more than
80% and less correlated than 50%, as listed below. The final rate was 89.2%, showing that
the system can converge very quickly, but may take a long time to make slight
improvements. The detailed results are also presented in Table 2, under the label EDS2.

Rms(SplitOverlap(x,220.0,0.1))
SpectralSpread(SplitOverlap(x,220.0,0.1))
SpectralDecrease(SplitOverlap(x,220.0,0.1))
SpectralKurtosis(SplitOverlap(x,220.0,0.1))
Variance(SplitOverlap(x,220.0,0.1))
Mean(SplitOverlap(x,220.0,0.1))
Sqrt(Sqrt(PitchBands(x,5.0)))
Log10 (PitchBands(x,5.0))
Square (Mfcc0(x,10.0))
Square (Chroma (x))
Power(Hanning (BarkBands (x, 20.0)), -0.5)

162

Table 2. Results for the Percussive Sound Classification

Low Slap JingleMethod
Tung Ting Pa Gr Pa Tchi Tr

Overall

ZCR 68.2% 38.1% 10.9% 22.5% 72.0% 18.8% 47.0%

SubBands 92.2% 42.9% 93.5% 72.5% 89.2% 81.2% 80.9%

EDS1 84.3% 92.9% 84.3% 80.0% 91.4% 81.2% 87.2%

EDS2 90.2% 61.9% 91.3% 95.0% 97.8% 87.5% 89.2%

Besides the bad cost-benefit relationship between performance and computational time,
the data shows that the mixture of features enhanced the robustness of the solution (visibly
the ‘ting’ class, a kind of low stroke frequently misclassified by the traditional solutions).
Additionally, it became clear that a split overlap analysis followed by a post-processing
technique such as Rms or SpectralSpread overwhelmed other features, becoming
predominant inside the populations. Finally, the addition of other kinds of features such as
Bark bands, Chroma, Mfcc and Pitchbands apparently increased the quality of the
descriptor.

9. Discussion
EDS revealed itself as a good feature exploration mechanism, and as so it seems especially
appropriate to new or scarcely explored problems. The case study three illustrated this
exploratory characteristic of EDS, as the user was able to try-and-test many possibilities,
some of them fairly complicated, serving to validate ideas and/or build prototypes. The
results in sections 6 and 7 pointed out that EDS can achieve satisfactory results for real
world well-known problems. It exceeded or improved traditional techniques, either by
optimizing existing ones or launching searches from scratch. On the other hand, the
system did not find any especially innovative feature. Even when started from scratch,
EDS-created features corroborated those from specialists.

For these specialists, EDS appeal relies on being: 1) an automatic tool to investigate
interesting possibilities of work, which can afterward be refined by the specialist; as well
as 2) a tool to optimize existing features.

We consider the feature selection methods could be improved, for example by using the
procedure described in [Herrera et al. 2002], since it lacks precise control of the features
and operators (ultimately the impossibility to build new operators).

At last, the quality of the final solution depends highly on the user. For instance, in a
previous work on the chord recognition problem (in Section 7), we explored the same
chord recognition database, while EDS was operated by a naïve user. The final descriptor
scored 40.31%, in contrast to the 72.68% achieved in our current study (see Figure 7).

Even with these disadvantages, we were quite satisfied with the performance of the
system, especially with its capacity to join the entire feature creation procedure into a
single piece of software, including the database creation, the search and selection of good
features, and the machine learning algorithms to combine them. A whole set of programs
which would be very expensive to implement. For this work, the results of traditional
approaches were obtained by re-implementing the algorithms described in the literature,
hence the performance could obviously be improved by cutting-edge technicians.
However, to remember the initial question, we consider these case studies realistic to mimic
someone who would start to develop some of these systems.

One extra asset of EDS is the visualization of the result. The rather simple interface,
showing the sound samples colored by their class, easily shows the correctly classified
instances, making the evaluation/analysis of the result more intuitive and direct. For
example, in the chord recognition problem we noticed that 18.94% of the errors referred to
equivalent chords, like Cº and Aº, F#m7/C# and A6/C#, or C/G and Am7/G. Moreover, the
system grouped together some chords (11.57% of the errors) with the same function, such

163

as F7 and B7(#11), or Em7 and A4/7. The system even corrected some faults in the
database, placing chords like C/Bb in the right class (C7 instead of Cmaj). This situation
represented 6.31% of the errors. In the end, the actual error rate would be of 12.47%
(instead of the 27.32% previously mentioned), from which only 0.79% refers to flagrant
errors.

10. Conclusion and Future Work
This paper presented 3 case studies illustrating the use of an automatic extraction tool
called EDS. The work intended to validate the effectiveness of the tool in creating
descriptors sufficiently good to be used in real-world applications. The case studies
referred to the f0 estimation, the chord recognition, and the percussive sound classification
problems. The results showed that the system was able to achieve and even surpass
traditional descriptors.

These descriptors were needed for two systems currently being developed (an
accompaniment system and an interactive rhythmic tool), and we found it very useful to
share our experience with the community. We commented the usage of the system, and
suggested some desirable improvements, which can be envisaged as future work.

11. Acknowledgments
We would like to thank the whole music team at Sony CSL for the support and
encouragement and SBCM’07 reviewers for their comments.

References
Bartsch, M. A. and Wakefield, G. H. (2001) To Catch a Chorus: Using Chroma-based

Representation for Audio Thumbnailing, Proceedings of International Workshop on
Applications of Signal Processing to Audio and Acoustics, Mohonk, USA.

Cabral, G., Zanforlin, I., Santana, H., Lima, R., and Ramalho, G. (2001) D'accord Guitar:
An Innovative Guitar Performance System, Proceedings of Journées d'Informatique
Musicale (JIM’01), Bourges, France.

Cabral, G., Pachet, F., and Briot, J.-P. (2005) Automatic x Traditional Descriptor
Extraction: The Case of Chord Recognition, Proceedings of the 6th International
Conference on Music Information Retrieval (ISMIR'2005), London, U.K., September.

Cheveigné, A. de, and Kawahara, H. (1999) Multiple Period Estimation and Pitch
Perception Model, Speech Communication, 27:175–185.

Fitzgerald, D. (2004) Automatic Drum Transcription and Source Separation, PhD
Thesis, Conservatory of Music and Drama, Dublin Institute of Technology.

Fujishima, T. (1999) Real-time Chord Recognition of Musical Sound: a System using
Common Lisp Music, Proceedings of International Computer Music Conference
(ICMC’99), Beijing, China.

Gómez, E. and Herrera, P. (2004) Estimating the Tonality of Polyphonic Audio Files:
Cognitive versus Machine Learning Modeling Strategies, Proceedings of the 5th
International Conference on Music Information Retrieval (ISMIR’04), Barcelona,
Spain.

Gouyon, F., Pachet, F., and Delerue, O. (2000) On the Use of Zero-Crossing Rate for an
Application of Classification of Percussive Sounds, 3rd Digital Audio Effect
Conference (DAFX’00), Verona, Italy.

Herrera, P., Yeterian, A., and Gouyon, F. (2002) Automatic Classification of Drum
Sounds: a Comparison of Feature Selection Methods and Classification Techniques,
Proceedings of the 2nd International Conference on Music and Artificial Intelligence
(ICMAI’02), Edimburgh, U.K.

164

Herrera, P., Dahamel, A., and Gouyon, F. (2003) Automatic Labeling of Unpitched
Percussive Sounds, Proceedings of the Convention of the Audio Engineering Society
(AES’04), Banff, Canada.

Klapuri, A. (2004) Signal Processing Methods for the Automatic Transcription of Music,
Doctoral Dissertation, Tampere University of Technology, Tampere, Finland.

Koza, J. R. (1992) Genetic Programming: on the Programming of Computers by Means
of Natural Selection, The MIT Press.

Kunieda, N., Shimamura, T., and Suzuki, J. (1996) Robust Method of Measurement of
Fundamental Frequency by ACLOS – Autocorrelation of Log Spectrum, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing.

Mitchell, T. (1997) Machine Learning, McGraw-Hill.
Pachet, F and Briot, J.-P. (2004) Informatique Musicale : du Signal au Signe Musical,

Hermès/Lavoisier.
Pachet, F. and Roy, P. (2007) Exploring Billions of Audio Features, Proceedings of 5th

International Workshop on Content-Based Multimedia Indexing (CBMI’07),
Bordeaux, France, June.

Sheh, A. and Ellis, D. (2003) Chord Segmentation and Recognition using EM-Trained
Hidden Markov Models, Proceedings of the 4th International Symposium on Music
Information Retrieval (ISMIR’03), Baltimore, USA.

Timidity (2006) Website: http://timidity.sourceforge.net/
Yoshioka, T., Kitahara, T., Komatani, K., Ogata, T. and Okuno, H. (2004) Automatic

Chord Transcription with Concurrent Recognition of Chord Symbols and Boundaries,
Proceedings of the 5th International Conference on Music Information Retrieval
(ISMIR’04), Barcelona, Spain.

Zils, A. and Pachet, F. (2004) Automatic Extraction of Music Descriptors from Acoustic
Signals using EDS, Proceedings of the 116th Convention of the Audio Engineering
Society (AES’04), Berlin, Germany, May.

165

