

Analyzing Multi-touch Data

 for Expressive Musical Performance

Patrick McGlynn

Sound and Digital Music Technology Group,

National University of Ireland, Maynooth,

Co. Kildare,

Ireland

patrick.j.mcglynn@nuim.ie

Abstract. Performance data from multi-touch devices can be interpreted in

great detail and used to describe the speed, shape, lifespan, size and position

of multiple gestures over time. However, most applications employ a GUI-

based interface which, by its nature, only affords significance to the

coordinates of a user’s fingers.

 This paper introduces the SurfacePlayer project – which aims to provide a

comprehensive library of high-level functions for working with multi-touch

surfaces in the Processing development environment. By providing convenient

access to information which was previously time-consuming to obtain, it is

hoped that this project will enable the rapid prototyping and creation of

elegant, expressive and intuitive digital musical instruments.

Analisando Dados de Multitouch

para Performance Musical Expressiva

Resumo. Dados de interfaces multitouch podem ser interpretados em grande

detalhe e usados para descrever a velocidade, forma, tempo de vida, tamanho

e posição de múltiplos gestos durante o tempo. No entanto, a maioria dos

aplicativos emprega interfaces gráficas que, por sua natureza, apenas dão

significado às coordenados dos dedos do usuário.

 Este artigo apresenta o projeto SurfacePlayer - que irá fornece uma

biblioteca completa de funções de alto nível para trabalhar com interfaces

multitouch em Processing. espera-se que este projeto permite acesso para

informação demorado caso contrário, com o objetivo último facilitar a

criação de instrumentos musicais digitais expressivos e elegantes

Introduction

This paper contends that the design of innovative multi-touch interfaces for the

expressive control of music has been hindered by a tendency to rely upon traditional

GUI-based environments. As a result, these systems seldom make intelligent use of the

subtle and complex data that can be derived from multi-touch devices. In order to

address this problem, this paper introduces the SurfacePlayer project – dedicated

towards developing a Processing library which allows users to manipulate multi-touch

data using a selection of high-level functions. It is hoped that this library will encourage

a more experimental approach towards multi-touch gestures and facilitate the creation of

radically innovative and expressive performance interfaces.

1. Context

This section describes recent trends in the use of multi-touch technology for musical

performance and highlights some areas where improvement may be made.

1.1 Multi-touch technology

Much like the widespread adoption of Graphical User Interfaces in the 1980‟s, the

recent ubiquity of the multi-touch (MT) interface has prompted significant changes in

the field of Human Computer Interaction (HCI). There has been a massive upsurge of

commercial devices which employ MT since Jeff Han demonstrated his work in 2006

[1][2]. The new means of interaction afforded by this technology has been of particular

interest to the computer music community – a well-designed MT interface has the

potential to combine the tactile elegance of an acoustic instrument with the rich data

output typically required for the expressive performance of electronic music.

 The discontinued Jazzmutant Lemur [13] set a high standard for MT musical

control by combining a high-resolution touchscreen with a flexible and powerful

interface editor. The Lemur demonstrated the usefulness of many features which are

fundamental to similar interfaces today – e.g. multiple touch points, Open Sound

Control [14] compatibility, network-based communication and customizable surfaces.

Applications such as TouchOSC [22] provide similar functionality, albeit minus the

advanced scripting and physics capabilities of the Lemur, on Apple iOS devices [10]

and thus represent a more cost-effective implementation of the „customizable control

surface‟ idea. A more experimental approach is demonstrated by applications such as

Konkreet Performer [8] which allow the user to send MIDI or OSC data by

manipulating abstract shapes displayed upon the screen.

 Alongside these commercial ventures, online communities such as the Natural

User Interface Group [9] are dedicated towards maintaining “a collaborative

environment for developers that are interested in learning and sharing new HCI methods

and concepts” [23]. Open-source frameworks such as the NUI Group‟s own Community

Core Vision [11] and the TUIO protocol [12] allow for the rapid prototyping and

development of experimental MT interfaces.

 However, despite the fact that “gestural interfaces have a much wider range of

actions with which to manipulate a system” [5], the vast majority of MT applications are

built around a familiar GUI-style layout. While this traditional format undoubtedly

benefits from MT functionality (through the use of gesture-based shortcuts and the

ability to simultaneously manipulate several objects at once) over-reliance on interaction

paradigms inherited from WIMP (Windows, Icons, Menus, Pointers) interfaces has

made it difficult for developers to explore the full potential of MT interaction.

1.2 The multi-touch surface as a music controller

Previous research by the author has highlighted the importance of “adopting a

methodical approach towards identifying and classifying the types of data generated by a

particular device” [4]. A cursory glance at the capabilities of any MT device which uses

the TUIO protocol allows us to infer the information shown in Table 1.

 The location of individual fingers at any given point in time

 Whether or not the surface is being touched

 The number of fingers in contact with the surface

 The distance and angle between any of these points

 The location, area, perimeter and shape of a space defined by these points

 Whether or not a point is static or moving

 The speed at which a point is moving

 The direction in which a point is moving

 The length of time a point has been present on the surface

 The previous movements and average position of a given point…

Table 1. Example performance data available from TUIO devices

 This table serves to illustrate the problem with widget-based music software on a

MT platform. Such environments solely employ the first point, multiple finger positions,

to interact with various onscreen widgets such as buttons, faders, etc. The other types of

data outlined above, while they might appear abstract or trivial, can in fact be combined

in a wide variety of ways to create rich metaphors and gestural cues. It is plain to see

how, in terms of designing software for a role as potentially nuanced as musical

performance, the dominant GUI-based approach fails to utilize the available data in an

intelligent manner.

 Exceptions do exist, however, which fittingly treat the MT surface as a complex

and sensitive tool rather than just a novelty controller. Kevin Schlei‟s MDrumSynth and

MStretchSynth both rely heavily upon relationship-based analysis for multiple parameter

control [6], Balz Rittmeyer‟s Akustisch recognizes and responds to a selection of

expressive gestures using an elegant interpreter [15], and Christian Bannister‟s Subcycle

Labs cleverly analyses the number of touches present on the surface to toggle various

DSP effects [16].

 These examples, while markedly disparate in functionality and application, share

one important characteristic – the use of high-level metaphors derived from basic MT

data. The remainder of this paper describes a project which has been undertaken in order

to assist musicians and composers in the development of such metaphors.

2. Development

This section outlines the concepts and goals behind SurfacePlayer – a project which

aims to produce an open-source library for the design of innovative multi-touch

interfaces for musical performance.

2.1 Aims & objectives

One of the main reasons for the relative scarcity of experimental interfaces, such as

those mentioned above, is the amount of work required to analyze the data generated by

the MT surface. The requisite knowledge of basic networking, control flow, geometry

and HCI serves to form a significant barrier for even the most experienced users. While

there are plenty of libraries and applications available to obtain raw touch data, there is a

lack of support for high-level data which may prove to be more perceptually-relevant in

a live performance context.

 The objective of the SurfacePlayer project is to provide musicians and

composers with a modular set of tools to facilitate the construction of expressive touch-

based performance interfaces. It is hoped that this new set of interpretive tools will

allow designers to concentrate their attention on more musically-critical aspects of the

interface, such as mapping, and encourage more experimentation with MT music

performance.

2.2 Implementation

SurfacePlayer is currently being developed as a library for Processing [17] – a

development environment which uses easily-readable syntax and tends to be popular

among artists working with sound and visuals. The project comprises a selection of

algorithms which generate high-level information in response to MT data. This

information can be quickly accessed via concise function calls, thus allowing the user to

circumvent a considerable amount of programming.

 Prior to the work described in this paper, designers were restricted to the use of

raw data which describes the coordinates, speed and path history of a point, for example.

Hard-coding even simple gestures using this raw data can be a time-consuming and

tedious process. The SurfacePlayer library will support a wide variety of commonly-

used functions which receive TUIO data and check for certain conditions. When these

conditions are met, a gesture is recognized and relevant data related to that gesture can

be used within the performance patch.

 For example, in order to infer the direction of movement for a given touch, it has

previously been necessary to undertake a cumbersome analysis of the path history and

the average angle between points (or, alternatively, devise an algorithm which infers the

direction based upon the relative speeds of X and Y-axis movement). Similarly, an

action as ubiquitous as a „multiple-tap‟ (where taps made using more than one finger are

differentiated) requires an analysis of touch coordinates, birth/death time and the use of

multithreading in order to be of any practical use. The complexity of these processes is

likely to discourage the widespread use of the often useful information which they can

generate.

 In response to this issue, the functions being developed for the SurfacePlayer

library allow users to access this kind of information using succinct and easily-readable

commands such as „movementDirection()‟ and „multiTap()‟. Users can thus experiment

with different combinations and sequences of cues which were previously difficult to

implement.

 The functions are all being added to the library separately, allowing for the

possibility of user-defined/requested algorithms, and are compatible with existing TUIO

implementations for Processing – the user simply needs to import SurfacePlayer and call

upon the functions within their own code.

2.3 Example of use

This section describes how SurfacePlayer might be integrated into the architecture of a

typical MT performance system. Please note that, at the time of writing, it would be

impractical to provide examples which feature code as the syntax is still being finalized.

However the library will be made available, along with detailed instructions for use, on

the project website [18].

 A typical use of SurfacePlayer may be broken into three distinct components –

the input layer, interpretation layer, and output layer. These layers are illustrated in

Figure 1 and described in the following sections.

Figure 1. SurfacePlayer architecture

2.3.1 Input layer

This layer consists of any device, or number of devices, capable of generating TUIO

data in response to user gestures. In the example above, an iPad running the open-source

application TuioPad [19] sends MT data to a computer via a wireless network.

 The TUIO protocol was chosen due to its flexibility and active user community.

It also renders the system non-hardware-dependant – allowing the algorithms

implemented within SurfacePlayer to be used with any device capable of outputting

TUIO-formatted cursor data.

2.3.2 Interpretation layer

The composite elements of this layer are implemented within the Processing

development environment. The Processing TUIO Client API [20] listens for incoming

TUIO events and generates data related to touch positions, such as time tags and

coordinate paths. This data is subsequently interpreted by the functions provided by the

SurfacePlayer library – which itself is referenced from within the user-created

performance patch.

 As outlined in section 2.2, the information generated by the library can easily be

interpreted in a variety of ways depending on the specific needs of the user.

2.3.3 Output layer

According to the needs of the user, the gestures described by SurfacePlayer‟s functions

can be used to send OSC or MIDI data to other applications. The examples provided are

all implemented in the open-source sound synthesis environment QuteCsound [21]. A

number of templates will also be developed which can be used to generate simple visual

feedback in Processing itself. Projected or displayed on a convenient screen during

performance, this feedback can eliminate the need for a performer to look down at the

surface itself constantly while playing.

3. Future work

The current version of the SurfacePlayer library provides easy access to some of the

most commonly-used MT cues – such as tap and double-tap recognition, multiple-taps

supporting up to ten fingers, and directional swipes of varying speeds. It can also be

used to determine the surface area, diameter, centroid and perimeter of shapes formed

by surface touches. The accompanying examples illustrate how these cues can be

combined in complementary ways to create novel and expressive interfaces for the

control of music.

 In addition to supporting this kind of fundamental component, the project aims

to provide functions capable of tracking and interpreting more complex gestures. It is

intended that these will eventually allow the user to design and implement their own

discreet gestures in a manner similar to the work of Wobbrock, Wilson and Li [7]. The

library will continue to be freely-available online and a forum will allow users to request

new functions, share code, and show examples of the library in use.

 Ultimately, the tools developed for the SurfacePlayer project will be used to

illustrate and evaluate new approaches to the mapping problem which are currently

being investigated by the author [4]. It has been suggested that, with regard to electronic

music performance, complex interaction schemes have the potential to provide a more

intuitive and rewarding user experience than simple systems [3]. The SurfacePlayer

library will hopefully prove to be a valuable resource for anyone trying to elucidate

these issues through experimentation with touch-based interfaces.

Conclusion

This paper has drawn attention to a number of shortcomings with regard to the use of

multi-touch technology in musical performance. In particular, the tendency of current

applications to rely extensively upon coordinate data has resulted in the exclusion of

other potentially-useful data. In response to this problem, the SurfacePlayer library is

being developed in order to allow users to engage with this neglected information

quickly and easily. It is hoped that this library will encourage a more experimental

approach towards multi-touch gestures and facilitate the creation of radically innovative

and expressive performance interfaces.

Acknowledgements

The author would like to express his sincere gratitude towards Dr. Victor Lazzarini and

Dr. Gordon Delap for their endless enthusiasm, support and inspiration throughout this

research. This research project is funded by the John and Pat Hume Scholarship

programme at NUI Maynooth, Ireland.

References

[1] Han, J. (2005) “Low-Cost Multi-Touch Sensing through Frustrated Total

Internal Reflection”. In Proceedings of the 18th Annual ACM Symposium on User

Interface Software and Technology (UIST05), Seattle, USA. p. 115-118.

[2] Han, J. (2006) “Multi-Touch Demonstration - TED 2006”.

http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen.html

[3] Hunt, A. (1999) Radical User Interfaces for Real-time Musical Control. PhD

thesis, University of York.

[4] McGlynn, P. (2011) “Towards more effective mapping strategies for digital

musical instruments”. In Proceedings of the 9
th

 Annual Linux Audio Conference

(LAC2011), Maynooth, Ireland. p. 93-98

[5] Saffer, Dan. (2009) Designing Gestural Interfaces: Touchscreens and

Interactive Devices. Sebastopol, CA: O‟Reilly Media. p.6

[6] Schlei, K. (2010) “Relationship-Based Instrument Mapping of Multi-Point Data

Streams Using a Trackpad Interface”. In Proceedings of the 2010 Conference on New

Interfaces for Musical Expression (NIME2010), Sydney, Australia. p. 136-139.

[7] Wobbrock, J.O., Wilson, A.D. and Li, Y. (2007) “Gestures without libraries,

toolkits or training: A $1 recognizer for user interface prototypes”. In Proceedings of the

20th Annual ACM Symposium on User Interface Software and Technology (UIST07),

Newport, Rhode Island. p. 159-168.

[8] http://konkreetlabs.com/performer/overview/

[9] http://nuigroup.com/log/about/

[10] http://developer.apple.com/technologies/ios/

[11] http://ccv.nuigroup.com/

[12] http://www.tuio.org/

[13] Jazzmutant. Lemur. http://www.jazzmutant.com/lemur_overview.php

[14] http://opensoundcontrol.org/introduction-osc

[15] Rittmeyer, B. Akustisch. http://akustisch.digitalaspekte.ch/

[16] Bannister, C. Subcycle Labs. http://subcycle.org/

[17] Fry, B., and Reas, C. Processing. http://processing.org/

[18] McGlynn, P. SurfacePlayer. http://www.patrickmcg.com/surfaceplayer

[19] https://code.google.com/p/tuiopad/

[20] Kaltenbrunner, Martin. Processing TUIO. http://www.tuio.org/?processing

[21] http://qutecsound.sourceforge.net/

[22] http://hexler.net/software/touchosc

[23] http://nuigroup.com/log/nuigroup_book_1

