
FFT benchmark on Android devices: Java versus JNI
Antonio D. de Carvalho Jr1 , Max Rosan1 , André Bianchi1 , Marcelo Queiroz1

1Computer Science Department – University of São Paulo

{dj,maxrosan,ajb,mqz}@ime.usp.br

Abstract. This work presents a comparison of running times for Java and
C/C++ implementations of the FFT algorithm on Android devices. We com-
pare a pure Java implementation with the widely used FFTW library in C/C++,
considering also the possibility of multi-threading. 35 different devices were
benchmarked, and results on specific combinations of device model and oper-
ating system version are presented and discussed. We also discuss similarities
between single- and multi-thread versions of FFTW on multicore devices and
consider when developers can take advantage of each approach.

1. Introduction
The Fast Fourier Transform (FFT) is an important algorithm for signal processing ap-
plications that can be used in many scenarios, for example, for creating tactile feed-
back by analyzing audio data (Lim et al., 2013), reducing noise on mobile voice com-
munication (Jonathan and Leahy, 2010), performing face recognition (Cheng and Wang,
2011; Wang et al., 2010), and also for image processing on medical applications
(Jonathan and Leahy, 2010). Since the FFT running time is O(n log n) (where n is the
FFT block length in samples) (Cooley and Tukey, 1965), application development on de-
vices with low performance may require fine-tuning some of the FFT internal details in
order to ensure realtime operation.

FFTW (http://www.fftw.org/) is one of the fastest and most used FFT libraries
(Lin et al., 2011), and its use on Android devices would appear to be a step forward for
realtime signal processing compared to pure Java implementations on the Application
level. Nowadays, multicore devices are becoming cheaper, thus turning multi-thread into
a good approach both for developers and for users. On the other hand, since saving battery
in mobile devices is also a primordial concern, using more than one processor just for the
FFT algorithm is not an easy task. Another important consideration concerns devices’
specific scheduling policies that might decide when to split processing into two or more
cores or not. Multi-thread methods can give strange results depending on each device
model internal peculiarities.

2. Methodology
This work presents the results of a benchmark of the realtime FFT on blocks of varying
sizes using a Java implementation and the FFTW library, which is written in C/C++ and
is called through the Java Native Interface (JNI). We have set up an environment to run
arbitrary DSP algorithms over an audio stream segmented into blocks of N samples, al-
lowing for the variation of algorithm parameters during execution. The software used is
the Android DSP benchmarking application (Bianchi and Queiroz, 2012), an open source
project available at https://github.com/andrejb/DspBenchmarking/, with some modifica-
tions to include the FFTW via JNI. To compare the performance of different implementa-
tions of the FFT algorithm, we considered a pure Java implementation, the single-thread 193



FFTW and the multi-thread FFTW. As the FFTW implementation is written in C, JNI was
used to include the code into the benchmark. All performance measurements are made by
the application started by the user. User interactive assistance is kept at a bare minimum,
by starting the experiment and pressing a button to e-mail the results to the authors. To
obtain as many results as possible, we launched an open call for participation through e-
mail, and got responses comprising 35 different devices. Instructions were sent to stop all
applications and turn off communication (tests could only be started after the user enabled
flight mode) to impose an ”idle” scenario on every device. The result of imposing these
constraints is an overall experiment that automatically cycles through all benchmarking
algorithms, and then sends an e-mail report with results back to the authors.

3. Results and discussion

 0

 1

 2

 3

 4

 5

 6

16 32 64 128 256

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFT

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512 1024 2048 4096 8192

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFT - API 2 (blocos maiores)

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

Figure 1: Benchmark of FFT implemented in pure JAVA in devices with API ver-
sion 2.X for smaller (above) and larger (below) block sizes.

 0

 1

 2

 3

 4

 5

 6

16 32 64 128 256

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFT

MZ607
Nexus 7 (1)
GT-S7562
GT-I8190L
GT-I9000B

Nexus 4
Galaxy Nexus

MB526
Transformer TF101

GT-I9300 (2)

GT-I9300 (3)
LG-P990

ST25a
Transformer Prime TF201

Nexus 7 (2)
GT-I9300 (1)

LT26i
NB0026

DSP period

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512 1024 2048 4096 8192

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFT - API 4 (blocos maiores)

MZ607
Nexus 7 (1)
GT-S7562
GT-I8190L
GT-I9000B

Nexus 4
Galaxy Nexus

MB526
Transformer TF101

GT-I9300 (2)

GT-I9300 (3)
LG-P990

ST25a
Transformer Prime TF201

Nexus 7 (2)
GT-I9300 (1)

LT26i
NB0026

DSP period

Figure 2: Benchmark of FFT implemented in pure JAVA in devices with API ver-
sion 4.X for smaller (above) and larger (below) block sizes.

Figures 1 through 6 show the time taken by each of the FFT algorithms to be
executed on each device as a function of block size. By comparing the Java FFT and
single-thread FFTW results, on Figures 1, 2, 3, and 4 respectively, it is possible to notice
that single-thread FFTW is faster than Java FFT on blocks larger than 16 samples. For
N=16 the overhead of loading a dynamic library is not compensated by the efficiency of 194



 0

 1

 2

 3

 4

 5

 6

16 32 64 128 256

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (1 thread)

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512 1024 2048 4096 8192

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (1 thread) - API 2 (blocos maiores)

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

Figure 3: Benchmark of FFT using single-thread FFTW in native code in devices
with API version 2.X smaller (above) and larger (below) block sizes.

 0

 1

 2

 3

 4

 5

 6

16 32 64 128 256

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (1 thread)

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512 1024 2048 4096 8192

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (1 thread) - API 2 (blocos maiores)

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

Figure 4: Benchmark of FFT using single-thread FFTW in native code in devices
with API version 4.X smaller (above) and larger (below) block sizes.

 0

 1

 2

 3

 4

 5

 6

16 32 64 128 256

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (multithread)

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512 1024 2048 4096 8192

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (multithread) - API 2 (blocos maiores)

GT-I8150B
XT320

LG-P698f (2)
MK16i

GT-P1000L
MB860

LG-P500h (1)
GT-S5360L

LG-P698f (1)
GT-I9000B

GT-S5360B
Blade

LG-P500h (2)
Lenovo A750

GT-S5830i
GT-I8530

R800i
DSP period

Figure 5: Benchmark of FFT using multi-thread FFTW in native code in devices
with API version 2.X for smaller (above) larger (below) block sizes.

the C code, so that the results for the single-thread FFTW are actually worse than for the
Java FFT, but for larger block sizes the library is already loaded. The same is observed
with the multi-thread FFTW: it is executed after the single-thread FFTW and therefore 195



 0

 1

 2

 3

 4

 5

 6

16 32 64 128 256

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (multithread)

MZ607
Nexus 7 (1)
GT-S7562
GT-I8190L
GT-I9000B

Nexus 4
Galaxy Nexus

MB526
Transformer TF101

GT-I9300 (2)

GT-I9300 (3)
LG-P990

ST25a
Transformer Prime TF201

Nexus 7 (2)
GT-I9300 (1)

LT26i
NB0026

DSP period

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

512 1024 2048 4096 8192

D
u

ra
ti
o

n
 (

m
s
)

Block size

DSP routine execution time - Algorithm FFTW (multithread) - API 4 (blocos maiores)

MZ607
Nexus 7 (1)
GT-S7562
GT-I8190L
GT-I9000B

Nexus 4
Galaxy Nexus

MB526
Transformer TF101

GT-I9300 (2)

GT-I9300 (3)
LG-P990

ST25a
Transformer Prime TF201

Nexus 7 (2)
GT-I9300 (1)

LT26i
NB0026

DSP period

Figure 6: Benchmark of FFT using multi-thread FFTW in native code in devices
with API version 4.X for smaller (above) larger (below) block sizes.

there is no overhead for the initialization of the library.

It is also possible to notice on Figures 5 and 6 that FFTW has worse performance
when it is used with multiple threads. As it turned out, the Android kernel has different
policies in different devices, and some devices move threads to different cores only when
they are CPU-intensive and have been running for a sustained period. The use of native
code does not automatically imply better performance on every situation. It had been
noticed that using JNI increases application complexity and also has a cost associated
with calls to non-Java code, which makes it indeed worse for some applications (Lin et al.,
2011). Nevertheless, the implementation and comparison with native code for realtime
signal processing evaluated in our work show that there are more subtleties that should be
kept in mind, like the amount of data processed and the device specification about starting
cores and moving threads around.

References

Bianchi, A. J. and Queiroz, M. (2012). On the performance of real-time dsp on android
devices. Proceedings of the 9th Sound and Music Computing Conference, pages 113–
120.

Cheng, K.-T. and Wang, Y.-C. (2011). Using mobile gpu for general-purpose computing:
a case study of face recognition on smartphones. In VLSI Design, Automation and Test
(VLSI-DAT), 2011 International Symposium on, pages 1–4.

Cooley, J. and Tukey, J. (1965). An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301.

Jonathan, E. and Leahy, M. (2010). Investigating a smartphone imaging unit for photo-
plethysmography. Physiological Measurement, 31(11):N79.

Lim, J.-M., Lee, J.-U., Kyung, K.-U., and Ryou, J.-C. (2013). An audio-haptic feedbacks
for enhancing user experience in mobile devices. In Consumer Electronics (ICCE),
2013 IEEE International Conference on, pages 49–50.

Lin, C.-M., Lin, J.-H., Dow, C.-R., and Wen, C.-M. (2011). Benchmark dalvik and native
code for android system. In Innovations in Bio-inspired Computing and Applications
(IBICA), 2011 Second International Conference on, pages 320 –323.

Wang, Y.-C., Pang, S., and Cheng, K.-T. (2010). A gpu-accelerated face annotation sys-
tem for smartphones. In Proceedings of the international conference on Multimedia,
MM ’10, pages 1667–1668, New York, NY, USA. ACM.

196


