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Abstract. In the following paper a simple interactive system for non-idiomatic
improvisation is presented. The general approach assumes that a musician im-
provising in such a setting does not restrict his output to any fixed alphabet,
avoids any pre-established grammar and concentrates on articulating the con-
tinuation of a musical flow through constant anticipation of its future develop-
ments. Using audio classification techniques we map each played phrase to a
vector space representing textural features. The system then deduces possible
continuations of the ongoing phrase sequence and re-injects past ones in accor-
dance with (manually controlled) instructions as to “contrast” or to “follow”
on its predictions. The system was tested with a professional saxophonist and
proved a coherent and responsive environment with a wide range of possible
extensions.

Resumo. No seguinte artigo, apresentamos um sistema interativo para
improvisação musical não-idiomática. A abordagem geral assume que um
músico improvisanado nesse contexto não restringe os elementos de sua lin-
guagem musical a um alfabeto fixo, evita gramáticas pré-estabelecidas, e
concentra-se na articulação e continuidade do fluxo musical através da con-
stante antecipação de elementos futuros. Usando técnicas de classificação
de áudio, mapeamos cada frase tocada e as transpomos em um espaço ve-
torial que representa caracterı́sticas texturais. O sistema então prediz con-
tinuidades possı́veis para a sequência em curso e re-injeta segmentos passados
segundo instruções (controladas manualmente) para “contrastar” ou “seguir”
as predições. O sistema foi testado com um saxofonista profissional e demostrou
ser um ambiente de improvisação coerente e reativo, além de apontar para pos-
sibilidades de futuras ampliações.

1. Introduction
An automatic interactive improviser is considered here to be a musical system capable of
accompanying the playing of one or more live improvising musician(s). It is assumed that
the output it provides does not reduce to pre-established sets of formulas but is elaborated
“on the fly” from information extracted from the session of which it becomes an active
participant. Though no a priori restriction applies to the form its outputs must take, a
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general stylistic and contextual coherence is one of the general aims of the development
of such systems.

More often than not, automatic interactive improvisers are applied to free, or at
least non-idiomatic, improvisational settings. This may be attributed to the facts that their
mastery of truly idiomatic styles are still somewhat sketchy and that the exploration of
new musical horizons has been, from the start, an important motivation behind their de-
velopment. Free improvisation, however, does not solely - or even at times primarily
- rely on the pitch dimension to develop its musical discourse. Microtonal inflections,
“gestures”, alternative modes of playing, etc. might play a central role and bring the
“sounding” or “textural” dimensions more or less explicitly into the foreground. Further-
more, as no pre-established grammar or referent (in Pressing’s sense [1]) is supposed, the
principles from which continuity and general coherence of the musical flow are supposed
to follow are difficult to pinpoint.

In the following contribution, we present a simple automatic interactive impro-
viser for non-idiomatic improvisation the development of which was premised on the
following two principles. First it had to avoid any reliance on a pre-existing alphabet to
accommodate more “textural” types of features. Second, rather than to prolong a given
context, it would base its responses on an anticipation of the musical session’s current
developments into the immediate future.

In the approach proposed here the system captures the playing of an improvis-
ing musician, segments it into phrases and stores these alongside a (possibly extendable)
set of “textural” features. Basing its anticipation on this latter information using linear
prediction, it then re-injects past phrases into the present in accordance with a (manually
controlled) instruction as to “contrast” or “follow” on its prediction. The resulting system
was then tested for coherence and reactivity in improvisation sessions with a professional
saxophonist. Though it is far from bringing the principles on which its development was
premised to a close, it proved a flexible environment from which a wide range of exten-
sions and applications can be envisioned.

After a brief overview of some related work (section 2), the proposed system will
be presented in details (section 3). This will be followed by the description and analysis
of the tests that have been conducted (section 4) followed by some general comments
concluding remarks (section 5).

2. Related work

Since Lewis’s first experiments with Voyager in the 1980’s [2] a number of digital sys-
tems have been proposed that can be considered as falling into the definition proposed in
our introduction. Some, however, consider that “the interactive nature of a system can
be obscure, mysterious and opaque” [4] and have preferred to shift efforts away form
attempting to produce plausible imitations of interactive behavior towards more general
criteria and the designing of solutions that draw from a variety of techniques ( [3], [5]).

Amongst the systems that are concerned with such imitation, an important fam-
ily has taken on from research conducted in musical style modeling and imitation that
goes back to the earliest days of computer applications to music and the work of Hiller
and Isaacson [6]. The algorithms developed in this context have attained high level of
sophistication as attested, for instance, by [7] and [8]. The transposition to interactive im-
provisation has drawn from a variety of algorithmic resources. Pachet’s Continuator [9],
for instance, uses probabilistic decision trees, while OMax by Assayag et al. [10] uses
factor oracles. All of these “learn” either from a corpus or from the past of the ongoing 96



session to produce stylistically suitable continuations based on the most recent past of the
improvisation (called the context).

Other types of approaches must also be mentioned. Some, such as Biles’s GenJam
[11], use genetic algorithm. In this particular case, phrases of fixed length are generated
in response to the author’s own playing. Neural networks have also been experimented
with as exemplified by [12]. All these examples require lengthy, supervised, processes to
train their underlying algorithms.

The notion of anticipation (or expectation) has integrated music theory and anal-
ysis through the pioneering work of Meyer [13] and known important developments ever
since (see, for instance, [14]). It is also part of the psychology of improvisation behavior
at least since Pressing introduced it into the field in [15]. More recently, it made its way
into style analysis and imitation (see Conklin [7]) and into the development of automatic
interactive improvisers, with a notable contribution provided by Cont et al. [17]. All the
approaches involving the notion of anticipation the processes are based predominantly on
structures extracted from pitch configurations.

The system described below can be considered as loosely inspired from the latter
approach in that its responses are based on extrapolations of a current context into the
future, rather than on its continuation per se. Though the implementation presented here
does rely on pitch, it does not in principle depend on it as decisively. Indeed, it builds, for
each incoming phrase, a vector containing features that describe its overall textural profile.
The system extrapolates a possible continuation using a linear predictor (operating in a
continuous space) and re-injects segments from the session’s past based on this prediction.
This system is now described in more detail.

3. Proposed system

Our system articulates a total of four steps. The first is responsible for recording the audio
stream incoming from (for the time being) one live improviser and for segmenting it into
successive phrases st, t = {1, 2, 3, ..., T}. The second calculates an acoustic feature
vector xt that maps st into a N -dimensional vector space RN . The third calculates a
prediction of what the vector sT+1 might be. The fourth, finally, plays, at each trigger,
one of the past phrases in accordance with instructions as to “contrast” or “follow” on its
prediction. Each step is described in more details below.

3.1. Recording and Segmentation

Segments have been defined as audio slices having amplitude above a certain threshold
and boundaries between two silent moments (i.e. with values below the threshold). This
decision was based on the preliminary assumption that silences naturally articulate musi-
cal ideas and phrases. In order to capture points of segmentation, a simple threshold was
set for a low-passed RMS function extracted from the incoming signal. The threshold
value is determined to each performance by capturing the amplitude of the background
noise from the recording environment and adding 6 to 9 dBs to it.

3.2. Mapping

The mapping module assigns a feature vector defining textural characteristics of the seg-
ments. To generate it, low-level features – pitch (with the octave divided into 24 micro-
tones) and RMS – are extracted from the audio segments. These are calculated by using
Sigmund, a standard pitch tracking algorithm in Pure Data [18]. For each segment, the
chronologically ordered list of note durations is determined by considering the pitch curve 97



as a sequence of time intervals between changes of pitch. Finally a higher-level feature
vector xt is generate that comprises:

1. The mean, standard deviation and slope (angular coefficient of the linear regres-
sion) estimated over time from RMS, pitch and duration curves;

2. The Pearson correlation between each two of the three feature curves;
3. The total duration of the audio segment;
4. A 24 chroma pitch-histogram, obtained by the pitch curve, defining the har-

monic/intervallic characteristic of the segment.

3.3. Forecasting

The forecast module assumes that the feature vectors xt form a time series x1,x2, ...,xT .
Standard forecasting procedures can be performed to estimate a value for the next vector
xT+1. To obtain this we used a linear predictor, based on the equation:

xM =
K∑
k=1

akxM−k, (1)

where the prediction coefficient vectors ak are obtained by minimizing the average
estimation error over the training data and K corresponds to the predictor order, set a
priori. Order K = 5, performed well while allowing the system to become operational
from the onset of the improvisation. The predictor was obtained using standard pseudo-
inversion techniques and is re-computed with each new incoming phrase.

In another possible setting, used mainly for testing, the predicted vector xT+1 is
systematically taken to be the last completed phrase (xT ). Transition between the two
modes can be affected in real time if desired.

3.4. Output

At each (for the time being manually determined) trigger, the system re-injects a past
phrase into the present of the improvisation. The selection process is based on a contrast
factor γ. The system randomly selects a feature vector xk among the bγ(T −1)+1c ones
that are closest (in Euclidian terms) to the estimated xT+1. The past phrase re-injected
is then sk to which the feature vector sk corresponds. In the context of the present work,
the material was replayed literally or slightly transformed through timber distortion, but
without impeding its recognition.

4. Preliminary testing

Once in place, the system was tested with a professional saxophone player in a series of
improvisation sessions. The system was controlled by one of the authors of this paper. A
total of six short sessions, as described in Table 1, were played and analyzed. The impro-
viser was only informed on how the system works after the 3rd session was completed.

As hinted in Table 1, the system’s parameters were kept fixed during each the first
four sessions and varied freely during the last two. In the fourth session, the saxophonist
was instructed to avoid providing the progression with a clear direction and to provide
maximum contrast at all time. For the last two sessions no particular instruction were
given. The first four and the last two are now considered in turn. 98



Piece Description
1 Prediction is equated to last phrase,

minimum contrast
2 Prediction based on forecast, maxi-

mum contrast
3 Prediction based on forecast, mini-

mum contrast
Musician is informed on how the system works
4 Prediction based on forecast, min-

imum contrast, saxophonist asked
to intentionally avoid providing the
progression with a clear direction

5 All parameters freely determined on-
the-fly

6 All parameters freely determined on-
the-fly

Table 1: Description of the pieces used for testing.

4.1. Leaving the parameters fixed

To observe the general behavior of the system the paths it took through past segments
were plotted. The results are shown in Figure 1, whereby the y-axis represents to the
(chronologically indexed) segments from the improviser and the x-axis represents to the
(chronological) succession of triggers.

Figure 1a presents an entirely predictable behavior in which the last completed
segment is systematically repeated. On the contrary, Figure 1b displays a highly erratic
behavior, in which it is hard to detect a pattern. In both cases, the observed behaviors are
precisely the ones that the settings used would have us expect.

When the system is set to find a close match to the continuation it extrapolates, its
behavior is neither erratic nor entirely predictable, as shown in Figure 1c and 1d. In most
cases, the system tends to present re-configurations of segments taken form the relatively
recent past of the improvisation but without displaying the same predictability observed
in the first session. This type of behavior is dominant in the first half of Figure 1c and
alternates in Figure 1d. This behavior could be traced back to the fact that the improviser
tended to project similar or gradually evolving musical ideas over time spans that included
several consecutive segments.

Under this same configuration, the system also retrieved segments from a more
distant past. It did so, however, less often than in the second session. Also, it was observed
that these segments presented certain coherence with the current musical context. Figure
2 illustrates this by showing spectrograms of the saxophonist’s and of the system’s outputs
(see Table 1). This example corresponds to segments 27 and 28 in Figure 1c.

Two visually distinguishable spectral textures can be seen in both images. The
first is formed by sustained notes played in the higher register while the second is formed
by notes in the lower register repeated in rapid successions. The later is produced simul-
taneously by the saxophonist and by the system. The one played by the system, however,
had been retrieved from a more distant past and corresponds to the 7th phrase played by
the musician. 99
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(a) Session 1 (last segment, follow)

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70

Y
ie

ld
ed

 s
eg

m
en

t

Request number

(b) Session 2 (prediction, contrast)
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(c) Session 3 (prediction, follow)
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(d) Session 4 (musician creates contrast)

Figure 1: Re-injected segment for each request in sessions 1 to 4.
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Figure 2: spectrogram

4.2. Changing parameters on-the-fly

Figure 3 illustrates the system’s behavior in sessions 5 and 6, as described in Table 1. In
these sessions, the system’s parameters were changed on-the-fly by a human musician.
It is possible to see some stable and unstable parts, combining the behaviors observed in
Figure 1.
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(b) Session 6

Figure 3: Re-injected segment for each request in free improvisation sessions.

In Figure 3a, the system’s reactivity can be particularly clearly observed between 101



requests 26 and 45. The system presented a very stable behavior until request 30, when it
started behaving more erratically. Figure 4 depicts both the re-injected segments and the
instrument parameters during this excerpt. As can be seen, the contrast parameter was null
and, raised at request 30, caused the system to select segments that are more distant from
the current one. After that, the contrast parameter varied, maintaining a similar behavior.
After request 40, when the contrast was set back to null, the system returned to stability.
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Figure 4: Re-injected segments (line with dots), contrast parameter (thick line)
and reference for selection (gray background for prediction, white back-
ground for last sample).

A similar phenomenon can be observed in Figure 3b between requests 80 and 100.
As shown in Figure 5, the unstable gap is created between two evidently stable parts by
changing the value of the contrast parameter.
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Figure 5: Re-injected segments (line with dots), contrast parameter (thick line)
and reference for selection (gray background for prediction, white back-
ground for last sample).

The reactivity of the system can also be visualized in Figure 3b between requests
30 and 43. As shown in Figure 6, the user breaks the stability by raising the contrast level.
During the stable part of this example, the parameters were set as in session 1.

These analyses show that the user can directly induce the system to respond in
certain ways depending on his perception of the ongoing session. While the linear predic-
tion seeks a coherent continuation and may reinforce a stable behavior for the interaction,
the contrast factor can serve to re-inject musical ideas more removed from the present
contexts, potentially inducing new directions to the musical progression. 102
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Figure 6: Re-injected segments (line with dots), contrast parameter (thick line)
and reference for selection (gray background for prediction, white back-
ground for last sample).

5. Evaluation and Concluding remarks
The observations made during the tests just described showed the system to be both re-
sponsive and, in a certain narrow sense at least, coherent. An aspect that is much more
difficult to translate into objective terms, but which was clearly present during these tests,
is the playful quality the musical exchanges between the improviser and the person oper-
ating the system could be endowed with. Such observations were particularly encouraging
when considered against the system’s relative simplicity.

Concerning the two principles on which the development of the system was
premised: the non-reliance on a fixed alphabet and the use of anticipation as a basis from
which to determine outputs; both can be considered to having been met. The question
remains open as to their true contribution to the quality of exchange just mentioned. As in
any system that is supervised in real time, it is unclear to what extent success (or failure)
is due to the human intervention or to the system’s orderly behavior.

This problematic, whether answerable or not, directly suggests two directions in
which future developments could be taken: that of a greater autonomy of the system
and that of a more detailed and controlled anticipatory procedures. For the first, some
principle determining the calling of new phrases (triggers) would have to be devised as
well as criteria for the automatic selection of values for the contrast factor. For the second,
the exploration of further sets of features, with the possibility to control their impact
through weighting or through their partitioning into distinct sets could be envisioned. The
same can be said of the mechanism underlying the anticipation procedure itself. Indeed,
nothing impedes combining several, possibly concurrent, principle at the same time.

Each of these developments, from their prototyping to their eventual integration,
can be undertaken in separate steps and accompanied by live testing.

Finally, yet another type of development can be considered. As the system’s exter-
nal controls are both simple and intuitive, setups can be envisioned in which the performer
himself is in control through some form or another of augmented performance environ-
ment.

6. Acknowledgements
The authors would like to thank Prof. Rogério Costa, the saxophonist (and scholar of
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porary Digital Music from Instruments to Behavioural ObjectsÓ. Organised Sound.
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[6] Hiller, L.A, Isaacson. L. M. (1959) ÒExperimental Music: Composition with an Elec-
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