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Abstract. This paper presents a methodology for gesture segmentation of 
musical performances. It uses a novel approach based on cumulative 
dissimilarity (CDIS) to determine the velocity of the movement, as well as the 
local displacement of the musician during a musical gesture. A segmentation 
algorithm is applied along the dissimilarity vector to provide information 
about musical gestures. These movement segments are then compared to 
previous studies of movement analysis and correlated to onsets, and velocity 
data. During experiments, acoustical and motion data of clarinet 
performances were analyzed. Results obtained from motion analysis of the 
clarinet bell showed that, despite CDIS being a 1-dimensional descriptor, it 
retains information about movement direction and shape and is correlated to 
expressive musical content. 

1. Introduction 

According to Mitra and Acharya, (2007), “gestures are expressive, meaningful body 
motions involving physical movements of the fingers, hands, arms, head, face, or body 
with the intent of conveying meaningful information or interacting with the 
environment”. Gestures are studied in many different fields. In music, effective gestures 
are those that play a direct role in the production of sound, while ancillary gestures refer 
to body movements that are not involved in production of sound (Wanderley, 1999). 
During clarinet performances, it has been shown that ancillary gestures are not only 
frequent, but correlate with several audio cues that suggest its relation to musical 
expressive content (Teixeira et al., 2014).  

 Many studies have tackled expressiveness throughout analysis of acoustical data, 
such as energy envelope, pitch, note onsets and offsets, attack duration and spectral 
centroid. Some examples of such an approach can be seen in Campolina et al. (2009), 
Maestre and Gómez (2005) and De Poli et al. (2004). These studies have shown that 
musicians make use of small deviations, regarding note durations, articulations, 
intensity, pitch and timbre, in order to convey their musical intentions (Juslin, 2000). 

 Fenza et al. (2005) used a 3 layer motion processing to segment movements 
based on Quantity of Motion, and investigated gesture mapping in a 3D expressive 
space. Camurri et al. (2004) presented the gesture as a conveyor of information related 
to the emotional domain in dance or music performances. They identified descriptors 
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related to specific features of trajectory patterns, such as angularity, spatial occupation, 
symmetry, and others. Several other fields of research have successfully employed 
multi-modal analysis to study the coupling between the acoustical and visual 
components, such as in speech analysis (Barbosa et al., 2008) and dance (Naveda and 
Leman, 2009). 

 Wanderley et al. (2005) and Vines et al. (2006) showed that body movements 
are part of a performance, and some gestures are not produced for the purpose of sound 
generation, which they designated as ancillary gestures.  They also observed that these 
gestures were closely related to the musician’s expressive intentions in a particular 
performance. 

 Recent studies have searched for methods to extract and analyze these 
movements in detail. Teixeira et al. (2010) proposes a tangential velocity based model 
to represent, segment and analyze expressive movements based on local gestural 
parameters. More recently, Teixeira et al. (2014) presented recurrent sequences of 
clarinet gestures in regions of the excerpts that related to musical structure. Teixeira et 
al. (2015) showed direct correlations between the recurrence pattern of clarinetists’ 
ancillary movements and expressive timing associated with melodic phrasing and 
harmonic transitions. Several studies search for methodologies for segmenting musical 
gestures, in order to stablish correspondence to musical structure. However, there are 
still no basic units established to segment body movements of music performances, 
unlike the audio data. 

 Caramiaux et al. (2012) used Hidden Markov Models (HMM) to segment 
movements into primitive shapes, selected from a base dictionary. Desmet, Nijs, 
Demey, Lesaffre, Martens and Leman (2012) proposed another statistical model for 
body movement segmentation and pointed to subjective links between these segments 
and the musical score. Rasamimanana (2012) defined a conceptual framework 
considering performer–instrument relationships that can provide ground to model 
expressive gestures using a space of possibilities.  

 In this study, we present a procedure for automatic movement segmentation in 
order to extract clarinet players’ physical gestures during performances of pieces of the 
classical repertoire. We aim at evaluating gesture segmentation of several clarinetists, 
and with the purpose of relating their gestural patterns to the music structure. 

2. Methodology 

The main goal of this study is to evaluate a new method for movement segmentation of 
musical performances by a group of clarinet players contained in the same dataset 
presented by Teixeira et al. (2014). Figure 1 presents a schematic diagram of the 
procedure. As seen in the diagram, acoustical and motion data were obtained from 
clarinet performances. Several features were then calculated based on these data. After 
calculation of the cumulative dissimilarity vector, several procedures such as 
thresholding and filtering are applied to segment the musicians’ body movement into 
gestures. This section presents how these features are obtained and combined to allow a 
fully automatic detection of musical gestures. 
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Figure 1. Movement segmentation procedure diagram. 

 Ten  professional clarinet players performed a short excerpt of six bars extracted 
from the first movement of the Quintet for Clarinet and Strings in A Major, Kv 581 by 
W.A. Mozart (Figure 2). The musicians were asked to play according to two distinct 
experimental conditions: expressive performances as in a real concert situation  
(standard condition) and following a metronome, set to a tempo estimated from his/her 
previous standard performances (metronome condition). Each of the ten clarinet players 
performed this excerpt six times without accompaniment, three performances for each 
of the two experimental conditions. Motion tracking was done with high-end 3D motion 
capture devices, the NDI Optotrak Certus and the NDI Optotrak 3020. Motion capture 
markers were placed on their bodies and instruments. Detailed information and pictures 
about experiment setup, such as marker positions can be obtained in Teixeira et al. 
(2014). 

 Motion was captured at a sampling rate of 100 frames per second. Audio was 
recorded synchronously at a sampling rate of 44.1 kHz using a condenser microphone 
positioned one meter away from the clarinet. Pitch and energy envelope curves were 
extracted, and from these all note onsets and offsets were detected using the system 
described in Campolina, Loureiro and Mota (2009). 

 
Figure 2. Main theme from first movement of Mozart’s Quintet for Clarinet and 

Strings in A Major, Kv 581, performed in the first experiment. 

2.1. Movement representation 

Movement analysis in this study is based on the clarinet bell movement. The clarinet 
movement has been the object of previous studies (Caramiaux, Wanderley and 
Bevilacqua, 2012; Wanderley, 2002; Wanderley, Vines, Middleton, McKay and Hatch, 
2005) and it is believed to be an important indicator of expressive movements made by 
the musician. The segmentation methods presented by these approaches are mainly 
based on mapping or recognition from a dictionary of shapes (Caramiaux et al., 2012; 
Vatavu et al., 2009), or low level features such as velocity or Quantity of Motion (Fenza 
et al., 2005).  

 The present study proposes a novel approach that abstracts from shape mapping 
but considers movement direction in a cumulative dissimilarity measure of movement 
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which might be more effective for stablishing correspondence between gesture and 
audio musical content. Previous studies suggested the clarinet bell movement as an 
indicator of expressive movements of clarinet performance (Wanderley, 2002; 
Wanderley et. al., 2005). Thus, the movement of the clarinet bell was taken relative to a 
coordinate system, located in the center of the Optotrak tracker. With a static reference, 
instead of a dynamic one, such as the mouthpiece, the clarinet bell movement 
incorporates any movement performed by the musicians with their feet, knees, torso, 
neck and arms, and can thus be seen as a general indicator of the players’ movements. 
Optical flow techniques were already used to define a general motion indicator 
(Barbosa, Yehia and Vatikiotis-Bateson, 2008). The analysis of a single tracking point, 
the clarinet bell, offered more precision and allowed to include its 3D trajectory, in 
order to define recurrent gestures and many associated gestural features. 

 The clarinet bell’s tridimensional motion is represented by a matrix of 
dimension T x M, where T represents the number of time frames and M represents the 3-
dimensional markers’ positions. We used three markers (top, left and right) to capture 
bell’s translation and rotation in X, Y, and Z coordinates (Figure 3). Previous analyses 
showed that these markers are highly correlated and do not add in precision to the 
expressive gesture segmentation, probably due to the fact that the extent of rotation is 
small compared to the extent of translation. X and Y axes presented a correlation 
coefficient of 99.6% among markers and Z axis 92%. Correlation index of combined X 
and Y axes ranged between ±4%. 

 
Figure 3. Trajectories of clarinet bell’s top, left and right markers. 

2.2. Movement processing 

In order to analyze the evolution of the clarinet bell’s tridimensional motion in 
conjunction with the acoustical data, we need an effective scalar representation of the 
motion data in time. Fenza et al. (2005) call these low-level features related to motion 
description. A simple solution presented by Teixeira, Loureiro and Yehia (2010) is to 
use the tangential velocity of the clarinet bell marker’s trajectory, estimated by the 
Euclidian distance between subsequent samples of the positions of this marker.  
Although this unidimensional parameter captures a large amount of information from 
the musician’s movements (Teixeira, Loureiro and Yehia, 2010), it does not contain 
information about the direction or the shape of the movement. For instance, the 
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difference between an up and down movement and a long ascending trajectory made by 
the clarinet player would not be revealed solely by the tangential velocity. The same 
problem would happen with the low-level feature Quantity of Motion (QoM) from 
Fenza et al. (2005). However, Fenza and colleagues combine other low-level features to 
help describe shape and direction of movements, which are: Contraction Index (CI), 
Movement Length (ML), Straight trajectory Length (SL), and Directness Index (DI). 

 While the estimation of note onsets and offsets from pitch and energy envelope curves 
extracted from the audio signal, allows the segmentation of the acoustical data into 
musical notes and phrases, there are no basic units established to segment the 
movements into gestures. It is possible to develop a procedure to segment the movement 
data accordingly, by subdividing those movements into representative segments, based 
on their geometrical and temporal attributes. 

2.3. r-Cumulative dissimilarity (�-CDIS) 

To measure the amount of movement within a timeframe we present a new strategy 
based on a cumulative dissimilarity measure.  Patrocínio Jr. et al. (2010) originally 
presented cumulative dissimilarity to detect gradual transitions on video sequences. The 
main idea behind cumulative dissimilarity is that small movements around the same 
region in the feature space are meaningless, but small movements consistently driving 
towards a new region in that space might mean a transition between different scenes.  

 Given a vector of elements (v) and a 2r-sized sliding window centered at 
position k, the r-cumulative dissimilarity �-CDIS� can be calculated as: 

�-CDIS� =  � � DIS��� , ����+�
�=�+1

�
�=�−�+1 , 

where DIS��� , ��� is a dissimilarity measure between vector elements vi and vj . 

 Several different dissimilarity measures can be employed to calculate 
cumulative distance curve. In this work, Euclidean distance will be used as a 
dissimilarity measure calculated as: 

DIS��� ,��� = � (��,� − ��,�)2�
�=1  

where M is the number of marker positions as stated in Section 2.1. 

 The main advantage of using a cumulative dissimilarity approach is that it can 
detect long gradual displacements during a fixed period and is resilient to small constant 
movements that go back and forth around the same region. Figure 4 clarifies this 
character. Figure 4 (upper line) presents four of the ten common gestures defined by 
Vatavu, Grisoni and Pentiuc (2009). All movements were designed to have exactly the 
same overall length (100 points) and same tangential velocity. The only parameter that 
changes among them is the direction of the movement. Lower plots show tangential 
velocity and cumulative dissimilarity measures for all the four movements. Cumulative 
dissimilarity was calculated based on a 20-point sliding window and first and last points 
were replicated to avoid border effects. 
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Figure 4. Lower panel show cumulative dissimilarity (10-CDIS) and tangential 
velocity (dashed line) of common gestures (top panel). Adapted from Vatavu, 

Grisoni and Pentiuc (2009), Fig. 7, p. 9. 

 It can be seen in Figure 4 that longer movements result in higher cumulative 
dissimilarity on average. This feature also captures the change in direction: the higher 
the change in direction the lower the cumulative dissimilarity value. These properties 
allow for better characterization of movements and provide a base for gesture 
segmentation. 

2.4. Movement segmentation 

Movement segmentation is performed in four steps. Firstly, �-CDIS� of Euclidean 
distance is estimated in every point of the T x M matrix of markers positions. The result 
is a vector of length T of �-CDIS�, for � ∈ [1. .T]. The second step is the thresholding: 
every point in vector below a certain threshold is set to zero. This step is important to 
eliminate small movements that are constrained in space, especially those movements 
from balance and posture control (Winter, 1995). Afterwards, the 1st derivative is 
calculated and used to estimate limits, considered as movements onsets and offsets, 
analogous to notes onsets and offsets, upon which movement lengths are estimated.  A 
final step filters movement segments that were considered  too short according to a  pre-
defined note duration related to the estimated musical tempo in beats per minute (BPM). 

3. Experimental results 

 Table 1 summarizes the recording dataset of 60 performances, as previously described, 
of an average length of 18.7 seconds, summing up almost 23 minutes of recorded music. 

Table 1. Description of the recording dataset. 

Recordings Recording length (seconds) Tempo (BPM) 

# Clarinetists 10 Max  22.1 Max  128.6 
# free expressive performances  3 Min  16.5 Min  85.6 

# metronome restricted performance  3 Mean  18.7 Mean  113.9 
Total # of recordings 60 Total  1,126.6   

 Figure 5 shows the thresholding procedure. Cumulative dissimilarity vector is 
represented by a 50-CDIS (� = 50), which means that a window of length 100 was 
used. Since the motion capture sampling rate is 100 samples/second, window length 
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corresponded to exactly 1 second. According to Patrocínio Jr. et al. (2010), �-CDIS is 
specially good in finding segments of length 2�. Larger values of � flattens the CDIS 
curve, making it harder to segment and losing precision in gesture position estimation, 
since it might sum up more than one gesture altogether.  The threshold value used in all 
50-CDIS curves was 8%, which was empirically obtained. Larger threshold values 
reduce the average length of motion segments, eliminating small segments and 
increasing the number of medium sized segments. On the other hand, smaller threshold 
values produce several meaningless micro-movements, and extra long macro-
movements. 

 
Figure 5. Thresholding procedure. Horizontal dashed line represents threshold 
(8%). Vertical lines represent onsets (dashed lines) and offsets (dotted lines). 

Continuous line represents normalized 50-CDIS as a function of time (s). 

 After the thresholding, CDIS vector was segmented and movement onsets and 
offsets were determined. First two rows of Table 2 show the results obtained from 
segmentation. The smallest detected movement has only 30 milliseconds, which is 
shorter than a sixty-fourth note in an Allegro tempo of 120 BPM. The largest segment 
was more than 15 seconds long. At first, we will consider that long movements occur 
when the musician keeps moving continuously and we will not force any further 
segmentation. However, we considered that too short segments do not correlate to music 
expressiveness and therefore should be removed by considering that ancillary gestures 
shorter than a sixteenth note are not long enough to convey expressive content. 

Table 2. Segmentation and filtering results 

Variables Minimum value Maximum value Mean value 

Duration all segments (s) 0.03 15.53 1.79 
# Segments / performance 1 11 6.9 
Duration long segments (s) 0.13 15.53 1.81 
# Long segments / performance 1 11 6.8 

 The cut-off length was estimated by the duration of the sixteenth note for each 
performance tempo in BPM, estimated from note onsets. Figure 6 shows a histogram of 
the estimated tempi. One performer played the excerpt in tempo Andante, much slower 
than the expected Allegro. 
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Figure 6. Histogram of recording tempos. 

 Figure 7 shows histograms of gesture duration. Upper plot presents unfiltered 
gesture segments and lower plot segments after removal of short segments. It can be 
clearly seen that there are 5 large segments above 9 seconds long, in a total of 413 
detected gestures. 127 segments (30%) have duration between 1 and 2 seconds. Lower 
plot shows results after filtering. Only 5 segments were removed and length distribution 
remained almost the same.  

 
Figure 7. Histogram of gesture durations. Upper plot shows 413 unfiltered 

segments. Lower plot shows 408 BPM-filtered segments. 

 Figure 8 shows a sample segmentation of three expressive performances played 
by the same clarinetist. This clarinetist produced the largest (upper plot) and the 
smallest (middle plot) segments compared to all recordings. It shows how sensitive to 
the thresholding the segmentation procedure is. However, Figure 9 show other three 
expressive performances played by another clarinetist. It can be seen that this clarinetist 
has a steady behavior that was perfectly captured by the segmentation. In this case, all 
performances were segmented in four parts (the fifth part in the middle plot is actually 
silence, after the musician has finished playing). The four segments were also 
proportionally alike. 
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Figure 8. Sample segmentation of three free expressive performances from the 

same performer showing limitations of the model. Vertical lines represent 
movement onsets (dashed lines) and offsets (dotted lines). Continuous line 

represents normalized 50-CDIS as a function of time (s). 

 
Figure 9. Sample segmentation of three free expressive performances from a 

steady performer. Vertical lines represent movement onsets (dashed lines) and 
offsets (dotted lines). Continuous line represents normalized 50-CDIS as a 

function of time (s). 

 Figure 10 compares gesture segments to note onsets and tangential velocity. 
Pitch information is also presented to provide a better understanding of the 
performance. Figure 10 (a) shows the results obtained for a performance constrained by 
the metronome. It is important to note the correlation between tangential velocity and 
cumulative dissimilarity. However, CDIS curve eliminate local information about small 
movements and outstands the extent of the gesture as related to bell displacement. 
Visual analysis of that Figure also suggests correlation between gesture onsets and note 
onsets. Usually, gesture starts close to a note onset, but end earlier. An amplitude 
envelope of the note could possibly show some correlation to the decay of the gesture. It 
is not our goal yet to analyze the correlation between the gesture amplitude and musical 
content, but this must be further investigated. 

Figure 10 (b) shows the results obtained for an expressive performance. It is interesting 
to note that the gestures obtained by this segmentation procedure show correlation to 
some points of the music structure, especially to ascending and descending sequences. 
Usually, the gesture starts one note before the beginning of the sequence suggesting that 
such musical movements are being anticipated by the musician. The third gesture, 
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between seconds 13 and 17 is almost synchronized to the last legato ascending arpeggio 
that leads to the perfect cadence that closes the sentence. 

(a) (b) 
Figure 10. Gesture segmentation using 50-CDIS and 8% threshold compared to note 

onsets and tangential velocity. Vertical lines represent movement onsets (dashed lines) 
and offsets (dotted lines). 

 All CDIS plots were normalized in order to give a better understanding of the 
segmentation process, including the thresholding procedure. However, gesture 
amplitude may play an important role in future gesture analyzes.  

4. Conclusion and Further Works 

The main goal of this work was to provide a new way for automatic segmentation of 
body movement of musical performances into musical gestures. A method based on 
cumulative dissimilarity (CDIS) was presented. Sixty clarinet recordings were analyzed 
using 50-CDIS and thresholding of 8%. BPM based filtering allowed removal of 
meaningless short movements. The main contribution of our work is the application of a 
simple distance measure as a descriptor of musical gestures. Despite CDIS being a 1-
dimensional descriptor, it retained some information about movement direction and 
shape in its value. Experimental results showed some correlation between gestures and 
some musical passages, suggesting that these gestures might contribute to convey 
performers’ expressive intention.   

However, segmentation results can be highly dependent on CDIS radius and threshold 
values. So, as a future work, we plan to investigate thoroughly the effect of these 
parameters in gesture segmentation and devise an automatic approach to parameter 
estimation. We also intend to further investigate the importance of gesture amplitude 
and its correlation to expressive musical content. 
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