
Synesthesia Add-on: a Tool for HTML Sonification
Roberto Piassi Passos Bodo1∗, Flávio Luiz Schiavoni2

1 Institute of Mathematics and Statistics (IME)
University of São Paulo (USP)
São Paulo, São Paulo, Brazil

2Department of Computer Science (DCOMP)
Federal University of São João Del Rei (UFSJ)

São João Del Rei, Minas Gerais, Brazil

rppbodo@ime.usp.br, fls@ufsj.edu.br

Abstract

Web browsers using HTML5 and WebAudio
have been widely used as real-time audio en-
vironment and brought up new possibilities for
web art. In this paper, we present an investi-
gation on HTML sonification. In our approach,
HTML pages are read as musical scores and page
elements are played as a sequencer. We devel-
oped a tool for website sonification which can be
used to explore musical creativity and to create
new sound contexts based on the web pages. We
present the tags and attributes that are mapped to
sound parameters. In addition, we show how was
created sounds and visual feedback in this tool.

1. Introduction

For long, Internet has been used to distribute
art pieces through virtual Museums and virtual
Art Galleries. Although these are a great rela-
tionship between art and this technology, there
are more possibilities to art on the web than be-
ing a place to art commerce, release or distribu-
tion.

From the very first moment that images went
out over the Web, artists have been using the web
as an art medium and not just a new way to pub-
lish information. It can be used with artistic pur-
pose in a response to the digitalization of cul-
tural forms and the information technology rev-
olution [1] [2]. This art instance, called web
art, is about art works made specifically for the
web, available all the time, every place and ev-
erywhere to several distinct participants [2].

∗Supported by CAPES.

Historically, Web Art is probably a continua-
tion of Media Art where the viewer is not only
part of the audience, but a participant in that ex-
perience.

An important aspect on Web Art is about the
processes and tools used to this art instance. Web
Art is relatively inexpensive to produce because
HTML is a free language, HTTP is a free proto-
col and web browsers are free tools. It makes this
art format very accessible to digital artists[1].

Since the web browser is the web art medium,
a basic construction on Web Art usually runs
over the Hyper Text Markup Language (HTML).
HTML is a fast evolving language, supported by
a considerable community of developers, which
evolution demanded the incorporation of new
tags and routines in its last version, namely
HTML5. Apart from several news, HTML5
brought to the web a sound engine, called We-
bAudio API[3]. Before HTML5 it was already
possible to play audio files in a web page. The
WebAudio API brought the possibility to create
and process real-time audio in the web browser.
The browser is now a real-time audio rendering
tool and it gave new possibilities of interaction
and feedback to Web Art.

In this paper, we are using this APT to ex-
tend the browser capability to artistically sonify
every HTML page using the WebAudio API.
Classically, a goal of sonification is to transform
complex multidimensional data in intuitive au-
dio [4] [5] (as in text-to-speech or web accessi-
bility tools).

Alternatively to this approach for sonification,
our goal here is to create purely aesthetic sounds

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 75



that can be used to inspire compositional process
or just be enjoyed by the user.

The remainder of the paper is organized as
follows: Section 2 presents the idea of Web
pages sonification, Section 3 presents the project
main implementation, Section 4 presents initial
results, and Section 5 presents Conclusion and
Future Works.

2. About Web Pages
In the beginning of the Internet era, a web

page was a plain text, black on white, unformat-
ted and very informative document. In fact, there
are several old websites which the content is pre-
sented in this format even today. Despite the fact
that websites changed a lot from this initial lay-
out, this format keeps the content easily rendered
by a text-to-speech converter or a Braille device
(and accessibility is the most common goal in
web sonification [6]).

Such tools will read only the text content
and will ignore the visual aspects of the web-
site, namely a set of invisible tags and attributes
whose settings will define the page style.

Nowadays, we consider a traditional web page
as a triple of HTML, CSS, and JavaScript re-
sources. Basically, HTML is responsible for the
page content, page structure, CSS for styling (po-
sitions, sizes, colors, etc), while JavaScript is
used for dynamic actions in client side (interac-
tions, animations, etc).

In our project, we are ignoring the page con-
tent. We approached a web page as a music sheet
and, with that in mind, the first idea we had was
to use page structure as music structure and page
styling as some kind of flavor for synthesis.

3. Implementation
Since the genesis of this project, we wish to

allow users to sonify any site on the web. Nat-
urally, host our code together with all the sites
around the web is not possible, so we have de-
cided to extend the browser adding to it a sonifi-
cation capability.

Browsers can be extensible by an add-on, a
kind of plugin written in JavaScript, and users

can install add-ons adding more functionalities
to the browser.

To ensure cross-browser compatibility we
choose the WebExtensions system 1 which is
compatible with Google Chrome and Opera na-
tively, and with Firefox and Microsoft Edge after
a few modifications.

With the add-on we could run our JavaScript
code in any website, allowing users to explore
sonification ideas around the web. The new add-
on added our functionality to the web browser, as
presented on Figure 1.

Figure 1: Screenshot of the add-on

3.1. Collecting information about websites

The HTML language has the peculiarity of
enabling two sites with completely different code
structures to have the same visual, and two sites
with very similar source code to have completely
different visual. Furthermore, it is not easy to de-
termine which HTML tags are used in a website
just by observing the rendered page.

To have a better view about which tags and at-
tributes are common and how we could sonify it,
we decide to first collect information about sites.
We analyzed the HTML structure of a few web-
sites generating statistics of all the information
we were interested in.

More specifically, we made a JavaScript code
that goes down recursively on the page structure
from the <body> element gathering all useful
information and saving it in an array (making a
linearization of the data).

For instance, this code calculates a histogram
of tag occurrences. We selected the top 10 tags

1Available on https://developer.mozilla.
org/en-US/Add-ons/WebExtensions

SBCM 2017 16th Brazilian Symposium on Computer Music

76 São Paulo – Brazil



for http://bbc.com and http://cnn.
com, and presented them on Figure 2 and 3.

Figure 2: Most used tags of BBC site
and the proportion of their oc-
currences.

Figure 3: Most used tags of CNN site
and the proportion of their oc-
currences.

According to these statistics, the most used
tags in these websites are DIV, A, LI, and SPAN
(other tags appears more rarely). It gave us a
good tip about which HTML tags we could use
in the sonification process.

When an element is selected to be sonified, we
only have its name and where it belongs on the
HTML tree, and we need more information about
it to map to the synthesizers parameters. So, we
decided to investigate all of the style attributes
that are associated with the HTML element.

Analyzing the CSS sources is an arduous task,
because we can have more than one class by el-
ement, more than one file defining these classes,
and rule overwriting due to inheritance (the latter
is the worst case).

So we decided to work with computed style
in DOM. For this, there is a JavaScript function
called getComputedStyle() that returns the val-
ues assigned to hundreds of style attributes. This
large number was, to us, a new challenge due to
the need to select a subset of all of this informa-
tion. We considerate the so-called box model to
solve this problem.

Every modern browser has in its developer
tools a graphic visualization of an element by
the terms of the box model. It considers that ev-
ery element behave like a box. When you in-
spect an element, this graphic shows the com-
puted dimensions (width and height) beside other
attributes like padding (internal gap), margin (ex-
ternal gap) and border. Some browsers also show
the top and left positions of the element.

With this in hand and with the hypothesis that
these are the most used attributes in a page, we
move on to the step of fetching elements from
real sites and taking statistics from their styles.
Tables 1 and 2 present the statistics of the same
two websites mentioned above.

Table 1: BBC global statistics of styles
attribute avg std min max
width 343.83 820.57 0 25000
height 138.57 420.53 0 7589
top 1407.89 4013.39 -100000 7563
left 124.13 3014.81 -100000 1600
padding 19.38 56.80 0 702
borderWidth 0.11 0.84 0 18
margin 3.88 13.46 -224 88

Table 2: CNN global statistics of styles
attribute avg std min max
width 198.98 300.08 0 1348
height 53.89 120.86 0 1899
top 543.99 1051.76 -10000 2844
left 147.54 289.62 -100 1348
padding 4.97 29.78 0 639
borderWidth 0.12 0.75 0 8
margin -0.66 30.05 -626 100

3.2. The HTML Score

HTML is a hierarchical document where tags
are organized in a defined order. We can look for
a complete HTML structure as a tree with nodes
and their children, having the <body> tag as the

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 77



root. In our sonification project, the order of the
elements defines the order of notes reproduction
and the attributes of the elements define the notes
configurations.

For instance, the pitch of the note can be de-
fined by one attribute; the duration by other; the
amplitude by yet another (specific information
about mapping can be found in subsection 3.3).

Figure 4: Example page where each
block is mapped to a note in
our sonification add-on.

What is important here is that was created a
voice for each tag. Let’s imagine a synthesizer
playing notes for each rectangle on the web page
shown in Figure 4 (implemented only with divs).
When we map width to pitch and height to dura-
tion, we will have notes such as those in Figure 5.
If we had a more complex page with more tags,
we calculate the most frequent ones and sonify
each tag using a different synthesizer.

Figure 5: Visualization of notes in a pi-
ano roll after the sonification
of the page presented in Fig-
ure 4

Observe that the notes in the piano roll do not
have rests between them. This happened because
when the time of a note offset is reached, the next
one was started immediately. But this behavior
is not mandatory. We can map any attribute to

notes’ starting times and with this we can pro-
duce rests between notes. This will work because
the starting time of a note, added with its dura-
tion, not necessarily will reach the starting time
of the next one.

Even more, with this onset time mapping,
we can produce polyphony also. Depending of
which attribute is mapped to onset time, we can
have several notes beginning at the same time.
The reader is already able to perceive the numer-
ous behaviors that the add-on will have according
to all possible mappings.

The notes’ scheduling was implemented using
a JavaScript method called setTimeout() that re-
ceives a callback function and a time value. With
this method we were able to schedule all of the
notes onsets. The offsets were handled by the
synthesizers themselves (we passed the duration
to startNote() prodecure).

This scheduling is totally dependent of a pa-
rameter that we called “virtual clock relative
speed”. The concept of virtual clock was pre-
sented by Roger Dannenberg in 1984 [7] in the
context of Automated Musical Accompaniment.
Basically, it is a clock that evolutes by a rate of
the real clock. This rate is defined by the param-
eter mentioned above, which is a floating point
number that will determine the speed of the exe-
cution. For instance, if it is set to 0.5, the speed it
will be half of the original, if it is set to 2, it will
be the double, and so on.

The most exciting thing about this parameter
is not the capability of changing speed, but the
capability of changing speed by attribute map-
ping. We could map body’s background color
to the speed and have darker pages slower than
brighter ones. Or we could have variable speed
throughout the sonification. This can be achieved
mapping one attribute from the current sounding
element to dynamically change speed for the next
one. This can lead to totally unanticipated behav-
ior, but this is considered a positive feature of the
add-on for us.

3.3. Mapping HTML attributes to sound
information

Initially, we did not know which attribute
would be mapped to which synthesizer parame-

SBCM 2017 16th Brazilian Symposium on Computer Music

78 São Paulo – Brazil



ter. So, using the extracted statistics, we detected
the minimum and maximum values for each at-
tribute and mapped the actual range of values to
[0, 1].

With all the values between 0 and 1, we could
map any of them to any synthesis parameter
using any linear function (to adjust the value
ranges). In our first tests we realized that some
style attributes are most commonly used than
others, even when we work with the set of the
box model attributes.

For instance, borders are not frequently used
(lots of elements had borderWidth equals to
zero). Paddings and margins are the next ones
in number of zero occurrences, followed by top
and left. The most frequent computed style from
our selection are, definitely, width and height.

When we use width and height in a parame-
ter we had a greater variety; when we use bor-
derWidth in this same parameter we had lots of
equal behaviors. So we had two options: com-
bine parameters (and, thus, have the less variable
one working as a harmless modulator) or simply
avoid setting these less frequent attributes to core
synthesizers parameters (such as, pitch or dura-
tion).

3.4. Building Synthesizers
For the audio to be synthesized in real-time

on the browser itself, we used WebAudio to im-
plement the synthesizers. We tried to select
techniques that cover various different timbres.
Six instruments were developed for our add-on:
Block, Drum, Guitar, Harpsichord, Maraca and a
Pong.

All of them were implemented with the same
interface so that they could be easily alternated.
The pitch parameter is a MIDI note number, the
duration is in milliseconds and amplitude is a
value between 0 and 1 that determines the max-
imum in the note envelope. For illustration, the
current mappings are presented on Table 3.

3.5. Visual Feedback
In our first implementation we realized that

there were no visual feedback from the add-on.
Because of it, it was almost impossible to pre-
cisely affirm which element was being sonified

Table 3: Current properties mapping to
sound attributes.

Synth pitch duration amplitude
1 32 + W * 32 500 + H * 500 T
2 32 + L * 32 500 + P * 500 T
3 32 + H * 32 500 + W * 500 L
4 65 + L * 65 1000 * P * 5 M
5 32 + L * 32 500 + P * 500 B
6 44 + W * 32 500 + H * 500 L
W = width / H = height / T = top / L = left
P = padding / M = margin / B = borderWidth

at each time. To solve it, a CSS class was cre-
ated to visually highlight the elements that were
emitting sounds at a moment.

First, we tried to change colors, but some el-
ements did not accept that (the concept of back-
ground color doesn’t match with an image tag,
for instance). After that, we tried to add a very
noticeable border, but that broke the layout.

Borders has width and some pixels were
added in the overall width of the elements. With
this, some side-by-side elements became mis-
aligned or, even worse, did not fit at all on their
original positions.

The solution was to work with 3D transforma-
tions that did not change the original layout and
can be applied in any element. We implemented
an animation that shakes the element using small
translations from side-to-side, making one ele-
ment quite prominent in the page.

With this visual feedback we found another
issue: elements present in the HTML but invisi-
ble on the page were being sonified. For instance,
the page can have an image carousel that has sev-
eral images but only one is visible or it can have
a dropdown menu that has its items hidden. We
found several instances of this problem and we
found very difficult to came up with a solution
suitable to all cases.

Just to soften this issue, we implemented a
heuristic to check if an element is visible. It has
3 steps: a) calculate the top-left and bottom-right
corners of the element; b) find out what are the
visible elements of the page on these points; c)
check if both are the same original element.

We know that this heuristic is not perfect, be-

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 79



cause it does not solve, for instance, the case of
a N,M object on top of a N + 1,M + 1 object
with 1px offset (we consider that the one below
can not be seen), but it solves most of the rough
cases.

With all of these visual issues surpassed, we
ran the sonification add-on on the same websites
that we extracted the statistics, and we were re-
ally satisfied with the audible results.

4. Results

Our first result is a statistics add-on, which
can generate all statistics mentioned in Sec-
tion 3.1 to any website, and help musicians and
sonifiers to collect information about web pages.
This add-on generates images for some statis-
tics and for the piano roll, and can generate
LATEX tabular code also. This add-on is avail-
able on https://github.com/rppbodo/
statistics-addon.

The second and main result is the sonifica-
tion add-on itself, a sequencer that plays HTML
pages as musical scores and allow users to listen
page structure. It has 6 instruments in JavaScript
/ WebAudio with a common interface. These
instruments uses different synthesis techniques
like FM, AM, and additive. The add-on source
code is available on https://github.com/
rppbodo/synesthesia-addon.

5. Conclusion

In this paper, we presented a novel form
to create music based on HTML pages by the
means of a sonification add-on. For this, we
have chosen to use the structure of HTML web-
sites, instead of the content, to control production
through synthesizers.

We presented our strategies to sonification,
the statistics used to create the strategy and sev-
eral considerations about our development pro-
cess. Certainly, our strategies included subjec-
tive choices and the process counted on a previ-
ous experience to create synthesizers and choose
good parameters mapping the page elements to
sound.

As future work, we intend to explore websites
musically and research how it can collaborate to
music creativity on composition and improvisa-
tion. In the present implementation we are con-
sider only the page structure but it could be inter-
esting to sonify text nodes too. We are consider-
ing to create a third tool to achieve text sonifica-
tion.

5.1. Acknowledgment

We would like to thank the Computer Mu-
sic Research Group2 and the Sonology Research
Center (NuSom)3 at the University of São Paulo,
and the support from CAPES4.

References

[1] Mark Tribe, Reena Jana, and Uta Grosenick.
New media art. Taschen London and
Cologne, 2006.

[2] Annette Weintraub. Art on the web, the web
as art. Commun. ACM, 40(10):97–102, Oc-
tober 1997.

[3] Chris Rogers. W3c webaudio api. https:
//www.w3.org/TR/webaudio/, 2015.
Accessed: 2017-07-01.

[4] Oded Ben-Tal and Jonathan Berger. Cre-
ative aspects of sonification. Leonardo,
37(3):229–233, 2004.

[5] Thomas Hermann, Andy Hunt, and John G
Neuhoff. The sonification handbook. Logos
Verlag Berlin, 2011.

[6] Lori Stefano Petrucci, Eric Harth, Patrick
Roth, André Assimacopoulos, and Thierry
Pun. Websound: a generic web sonifica-
tion tool, and its application to an auditory
web browser for blind and visually impaired
users. Proceedings of ICAD 2000, pages 6–
9, 2000.

[7] Roger B. Dannenberg. An on-line algorithm
for real-time accompaniment. In ICMC,
pages 193–198. Michigan Publishing, 1984.

2http://compmus.ime.usp.br/
3http://www.eca.usp.br/nusom/
4http://www.capes.gov.br/

SBCM 2017 16th Brazilian Symposium on Computer Music

80 São Paulo – Brazil


