16th Brazilian Symposium on Computer Music

SBCM 2017

Vivace: a collaborative live coding language and platform

Vilson Vieira!, Guilherme Lunhani,
Geraldo Magela de Castro Rocha Junior, Caleb Mascarenhas Luporini,
Daniel Penalva, Ricardo Fabbri?, Renato Fabbri?

1Cod.ai
SC, Brazil

2Polytechnic Institute — IPRJ/UERJ
Rua Bonfim, 25 - Vila Amélia — CEP 28625-570, Nova Friburgo, RJ, Brazil

3Visualization, Imaging and Computer Graphics lab — VICG/ICMC/USP
Av. Trabalhador Sao-Carlense, 400 - Centro — CEP 13566-590, Sdo Carlos, SP, Brazil

vilson@void.cc, rfabbri@gmail.com, renato.fabbri@gmail.com

Abstract

Live coding is a performance and creative
technique based on improvised and interactive
coding. Many recent endeavors have focused in
live coding both because of aesthetics and as a
way to alleviate performance drawbacks when
the musical instrument is a computer. This pa-
per describes the principles and the design of Vi-
vace, a live coding language and environment
built with Web technologies to be executed on
web browsers. The approach is compelling by
1) allowing many performers to code simultane-
ously; 2) the synthesis of audio and video; 3)
a very simple syntax; 4) being a multiplatform
software. We also strive to contextualize Vivace
by means of historical and usage summaries in-
cluding a live coding sub-genre.

1. Introduction and narrative

Live coding is an artistic performance and cre-
ative technique based upon writing software code
in a live and improvised manner [1]. It can be
used to generate e.g. sound, images, video, lights
and poetry although it is prevalent in computer
music [2]. Most often, the code is continually
changed and projected in a large surface as a way
to make it visible to the audience [3]. The us-
age of live coding in non-performative contexts
is also reported, such as in sound design and art
installations [2]. In this paper, we describe Vi-
vace, a live coding language and platform. It
emerged from pragmatic and aesthetic needs, as
described in the following sections. The software

is cross-platform because it is based on web tech-
nologies, such as HTMLS Video and Web Au-
dio API, and is oriented towards video and music
rendering. The language is very simple, allowing
for a primary goal of Vivace to be achieved: the
simultaneous writing of the code by many per-
formers and the audience.

In summary, this paper describes how a num-
ber of artistic presentations motivated the cre-
ation of the language and platform, describes the
Vivace language and platform and how this en-
deavor lead to the emergence of a live coding
sub-genre called “freak coding” (e.g. by its man-
ifesto [4] and related artists).

1.1. A historical outline

In November of 2011, a live coding trio called
FooBarBaz [5] unleashed its first presentation for
a wide audience. Its performers used two in-
stances of ChucK [6] and a dedicated mixing
instance composed by Puredata and an analog
mixer !. Live coding had been gaining world
wide popularity [1, 7, 8, 3] which motivated the
creation of a dedicated congress, the Interna-
tional Conference on Live Coding (ICLC) [9],
already on its third edition, and a network of
public events and movements like Algorave [10].
Live Coding has been adopted by performers
also in Brazil, like Guilherme Lunhani, Anto-
nio Goulart, André Damido Bandeira and Magno

'Pictures of the presentation available at http://
www.flickr.com/photos/festivalcontato/
6436260557

Sao Paulo — Brazil

99

SBCM 2017

16th Brazilian Symposium on Computer Music

Caliman. However, when considering massive
audience, live coding practice remains quite un-
touched in Brazil. To the best of our knowledge,
the presentation was the first live coding perfor-
mance in our country with such a wide audience
— almost 5,000 attendees were in the gathering
where code was used on-the-fly to create the mu-
sic they were listening. At the same time, two
live coding desktop work-spaces were projected
on large screens to the public, following the prin-
ciples of the TOPLAP manifesto [11].

During the performance, the trio used ChucK
in an unconventional way. Instead of writing
loops and conditionals, one of the live coders
manipulated parameters of audio files by editing
lists of numerical values together with mnemonic
operations like retrograde and transposition. The
other live coder focused on more fluid lines with
large sounds with evolving characteristics; this
contributed for coherent musical arcs. Audio
mixing with Puredata was carried out by the third
performer literally using handwaving gestures
tracked by a camera and custom color detection
algorithms designed by us. Live coders used
code templates for quick insertion in the text ed-
itors (Vi and Emacs). Other visual resources the
performers focused on: Unix “cowsay” gener-
ated phrases and animated bouncing balls — stim-
ulating the audience to imitate Rapid Eyes Move-
ments (REM) — on both terminals, i.e. on both
screens projected to the audience. The perfor-
mance was reported as interesting by technicians,
artists and the general audience. Nonetheless, it
was altogether complex, not to say messy.

Based on the aforementioned elements, and
the need for greater simplicity and interactivity
with the public, the Vivace was designed as a new
live coding language and platform 2 [12]. To
avoid software configuration, and to make it easy
to share the session and the system, the Web was
chosen as the running environment for Vivace.
On every new session performed using Vivace,
new principles were added into the language and,
at the same time, into our artistic approach.

’Live demonstrations of Vivace are on-line at
http://void.cc/freakcoding and http:
//void.cc/cranio, ready to be used by everyone
using Google Chrome, Mozilla Firefox or Apple Safari.

1.2. Additional motivation & inspiration:
arrange the room, the code is dirty

Vivace is inspired by various live coding lan-
guages. The syntax of Vivace, as shown in Fig-
ure 1, borrows elements from ixi lang [13] such
as the use of sequences to control audio param-
eters in real time. ABT [14] and FIGGUS [15]
were tightly relevant to the development of Vi-
vace as well and we are planning to rewrite some
of their components — originally in Python — in-
side Vivace. ChucK was an influence from the
beginning, and Vivace resembles the simplified
interfaces that we constructed in ChucK which
were often minimized into lists in few lines.
Fluxus [16] was also inspirational for the Vivace
environment where the code is shown on top of
the video frames.

After the creation of the Audio Data API [17]
and the most recent Web Audio API [18] — easing
real time audio processing inside Web browsers
— a collection of audio Web applications started
to emerge. The same holds for live coding lan-
guages and systems. Thus, in addition to the
desktop languages above, Vivace was also in-
spired by recent Web live coding languages and
is part of this family of Web applications to-
gether with Gibber [19], livecoder [20], livecod-
ing.io [21], livecodelab [22] and Wavepot [23] to
mention just a few.

A remarkable difference between Vivace and
other languages and environments in the same
family is the element of collaborativity. Vivace
was built to enable writing code by many hands
at the same time, as with the now popular “e-
pads” or collaborative real-time text editors °,
a feature which is naturally implementable on
the Web. Another difference is the unconcern
to be a Turing-complete language. This made
the design of Vivace more flexible and closer
to musical thinking as opposed to a computing
process (a characteristic perceived in ixi lang as
well). Vivace is designed to associate the preci-
sion of code and the flexibility of artistic expres-
sion while maintaining simplicity.

3Etherpad on: http://etherpad.org.

100

Sao Paulo — Brazil

16th Brazilian Symposium on Computer Music

SBCM 2017

& - C [vivace.void.cc

l;cl.pos = [40]
eyes.pos = {1/4}

1 // positions of audio samples in seconds)

bass3.pos = [0, 4]
// rates of beat durationm -
bass3.pos = {1/2} .
// duration of the sample gl:a..l.n
bass3.gdur = [2] gl

|

“ beat2.pos = [0]
beat2.pos = {1/2}
beat2.gdur = [.‘I.]f

clapl.pos = [\0]

clapl. pos = {1/4, llw@ 1

clapl. gdur = [5]
e

° hatl.pos = [0] ~
hatl.pos = {1/8}
hatl.gdur =+[.5]

.

Figure 1: The Vivace platform basic interface: video playback is in the background while the
code is in the foreground and controls both video and musical audio. The interface
is accessed as a usual HTML page in a web browser.

2. The language (specification) we all
speak

Vivace, as a language *, is a collaborative

live coding language with use of extremely sim-
ple syntax, mnemonic operations, easy audio
mixing, template editing and audio parameters
automation. The use of shared code, sounds
and images leads to a more complex scenario,
thus increasing the possibility of inconsistency of
compiled code as well as artistic results.

Vivace is not an imperative language. Instead
of routines and procedures to control audio at-
tributes, it uses definitions related with musical
scores and the track paradigm common on mu-
sic production software [3]. It is natural to mu-
sicians (and, as we experienced during perfor-
mances, also to non-musicians) to understand a
sequence of notes, or audio parameters, repeating
over and over again, than for-loops and if-chains.
In this way, Vivace is a declarative, domain spe-
cific language, based on the following principles:

“The complete specification can be found at
https://github.com/automata/vivace/
wiki/Language-spec together with the grammar
(https://github.com/automata/vivace/
blob/master/vivace. jison) and lexical rules
(https://github.com/automata/vivace/
blob/master/vivace.jisonlex) specified in
Bison and Flex dialects, respectively.

e Names are literals like foo, bar, baz and
are defined as the user wants.

e Music is constituted by voices (instru-
ments).

e Voices have name, timbre and parameters
changing along time.

e The language should be simple. One only
defines some properties with a set of val-
ues (i.e. arrays, dictionaries) making it
possible to generate sequences.

e Mnemonic musical operations (reverse,
inverse, transpose) on properties by use
of syntax sugar: few chars, powerful
changes.

e Timbre are signals made by chains of au-
dio generators and filters or video files as
described below.

e Parameters are musical notes, ampli-
tudes, oscillator frequencies, delay time
and so on.

e Parameters change their values at specific
times and for certain durations.

Here is a “Hello, World!” Vivace code °

foo is a simple audio sample,
oscillator or video file
foo.src = youtube (' YOUTUBE_URL’)
defining the video positions

SYOUTUBE_URL stands for any youtube video
url such as http://www.youtube.com/watch?v=
XXX

Sao Paulo — Brazil

101

SBCM 2017

16th Brazilian Symposium on Computer Music

(in seconds) to be played
foo.pos = [10, 20, 35]

the durations,

as time ratios of a pulse,

to be played at each position:
foo.cdur = [1/2, 1/4, 1/8, 1/16, 1]

A voice is defined as foo and its parameters
are specified using the dot operator. Every pa-
rameter changes over time as the values written
in numerical sequences, surrounded by brack-
ets. A special sequence exists to every parameter.
This is essentially all of the Vivace syntax.

There are extra semantics to operate on the
sequences. Every sequence accepts operators:
mnemonic commands used to reverse, transpose
and even replace elements of the sequence based
on list comprehensions. Those operations are
common in music composition [3] and having
them as mnemonics makes typing fast and handy
for live coding. The next listing presents the stan-
dard operators:

one can use operators

foo.pos = [1, 2, 3] reverse

result is [3, 2, 1]

foo.pos = [1, 2, 3] inverse

result is [1, 0, -1]

foo.pos = [1, 2, 3] transpose +2
result is [3, 4, 5]

list comprehension
foo.pos = [i+1 for i in [1, 2, 311
result is [2, 3, 4]

or combine both
foo.pos=[i+1l for i in [1l, 2]] reverse
result is [3, 2] as expected

Vivace is written in JavaScript to take ad-
vantage of Web technologies. To parse Vivace,
Jison [24] comes handy, a JavaScript library
that clones Flex and Bison functionality as lexer
and parser. This flexibility to parse and exe-
cute new languages as JavaScript inside every
browser opens a remarkable opportunity to ex-
periment with new syntax and semantics for live
coding. To make the Vivace editor collaborative
we used ShareJS [25] which makes Web appli-
cations content live concurrent. ShareJS uses a
multiple clients and one server network archi-
tecture. By running a common server for both
Vivace Web application and files, it is possible
to share Vivace code with any client accessing a
common URL. Furthermore, considering the tra-
dition of UI design and development on the Web
thanks to HTML and CSS, one can experiment

those new languages with fast prototyped UI —
a requisite already addressed by live coding lan-
guages [26, 27] like Texture [28], Al-Jazari and
Betablocker. Along these advantages, it is impor-
tant to note: every live coding language built on
the Web runs everywhere a browser is installed.
No firewall chain to bypass for OSC, no software
installation and configuration, no dependencies,
people just need to type an URL.

2.1. Vivace audio and video engine

Before the Web Audio API, the only way to
create sound in web pages was using plug-ins.
Recently, the Web Audio API enabled real time
audio processing on Web browsers °. Every
functionality is implemented as native code (in
C++ and Assembly when appropriate) to guar-
antee maximum performance. The API is based
on a convenient and familiar paradigm: audio
unit graphs. Web Audio specifies a collection of
nodes (AudioNode objects) and routines to con-
nect and disconnect them. While manipulating
those nodes we can create a large number of
audio applications: synthesizers, filters, analyz-
ers, mixers and even real time audio engines for
live coding. This motivated basic explorations of
multichannel expansion, filtering and audio ef-
fects, controlling an integrated Web audio sys-
tem.

Every voice in Vivace is represented as a de-
fault audio chain such as the one shown in Fig-
ure 2. All audio unit parameters within this chain
(e.g. pitch, reverb time, high, medium and low
channel levels, panner values and gain) can be
manipulated editing the code or by sliders on a
GUI (Figure 3).

This kind of interface is more familiar to mu-
sicians, resembling a real mixer, and enables an
adequate treatment of voice timbre and spatial-
ization of the sound sources by means of param-
eters like level of stereophonic channels L and R,
quality, central frequency and gain of a 3-band
equalization filter, and reverb time control.

Vivace supports every audio unit implemented

SAt the time this paper was written, more than 74%
of current available Web browsers support Web Audio
API [29], including the most populars Google Chrome,
Mozilla Firefox and Apple Safari.

102

Sao Paulo — Brazil

16th Brazilian Symposium on Computer Music

SBCM 2017

Oscillator pitch

DynamicsCompressor

Convaolver

BiquadFilter H, M, L

reverb time

Panner LR

Gain gain

i

[AudioDestination] [Analyser]

Figure 2: Standard audio processing
units are directly related to
Web Audio API objects for
each voice within Vivace.

by Web Audio API. It is possible to load audio
files or synthesize in real time using wave-table
oscillators. The default audio chain of each voice
can be modified at any time while it is running.
It is interesting to note the presence of an “Ana-
lyzer” inside the default chain. It uses FFT (na-
tively implemented) to expose energies and fre-
quencies, enabling the use of those values to an-
imate videos and render graphical forms inside
Vivace.

Figure 3: Every audio unit parameter
can be manipulated by code
or using the Ul in the Vivace
platform.

Along with audio, Vivace supports video files.
It is possible to upload files or use YouTube
URLs. Videos are treated the same way as buffer
sources or oscillators, i.e. as voices, and can be
manipulated in real time, making Vivace a live
cinema or a VJing tool.

3. Into the wild: the rise of freak coding
makes it collaborative

Vivace as a tool enables interaction while ev-
eryone can use their own creativity. The interac-
tion is not mediated by a common score, but by
a mutual desire to create a composition in real
time. In this context the freak coder was born
(Figure 4): someone that adds his individuality
with others, aiming to transform the computer
into an instrument of artistic fruition, without re-
stricting to himself the control of the machine but
inviting everyone to join him in the activity. A
freak coder decides what he is going to do and
amplifies his own comprehension of the com-
puter capacity as an instrument. By using sim-
ple rules, Vivace enables the emergence of the
performance and makes it a kind of a collective
game, where the rules, being visible to everyone
through the code, eases audience and specialists

alike to join in.
)

o/

Figure 4: Freak coder: a live coder who
uses popular and “freak” me-
dia to boost the attention of
the audience to the shared
code.

Live coding becomes a natural path to the type
of use and technological development in which
freak coders are involved, in confluence with the
understanding that technology should never be
treated as a dogma or kept in secret. Live cod-
ing is seen as a behavioral de-alienation of a dig-
ital artist. The triad performer, code and audi-
ence characterizes the performance as live cod-
ing. This comprehension was possible after a
presentation by labMacambira.sourceforge.net at
the 9" edition of AVAV (AudioVisual Ao Vivo or
Live Audiovisual), an event where artists who are
experimenting with audio and video in real time
come together to show their works. In this pre-
sentation, the authors Caleb Luporini and Gera
Rocha started without Renato Fabbri and Vilson

Sao Paulo — Brazil

103

SBCM 2017

16th Brazilian Symposium on Computer Music

Vieira, as they were on their way to the pre-
sentation, traveling from another city. Upon ar-
rival, Fabbri and Vilson turned their laptops on
and started taking part on the performance in
such a way that no embarrassment or rupture was
brought into the event. It is important to state
that no previous rehearsal had taken place be-
tween Mr. Luporini and Mr. Rocha.” In the 30
minutes-long performance, the audience started
to take guidance from messages given on the
performance large screen and actually edited Vi-
vace code that was being played together with the
starting four performers.

Another artifact noted on the presentation
was the emergence, in a formal environment 8
of a collective euphoria fertilized by a human-
machine interaction. It is the performer’s posture
that takes a spectator to an experience of a non-
spectator and to take part on a highly technolog-
ical activity as something playful and possible to
be assimilated. During the entire presentation,
all labMacambira.sourceforge.net members were
cheerful and established a relation of lightness
and brotherhood with the audience. Spectators
were being constantly invited by the posture of
labMacambira.sourceforge.net members to inter-
act with what was being proposed. This interplay
between the four elements therein present — per-
formers, computer, Vivace and audience — cre-
ated an environment of collaboration and liberty
as generators of playfulness and technical knowl-
edge unheard of, at least in Brazilian live coding,
to our knowledge. This is the “facilitator” that
emerged and received the name freak coder.

To attract the attention of the wider audience,
we as freak coders used popular media as mate-
rial. The code was displayed in front of video
scenes sampled from popular Brazilian novels
(as in Figure 5) and B-movies, which resulted
in a “freak” style, with images of monsters and
funny dialogues between novel actors. In other
performances for heterogeneous attendees the ef-
fect was the same as the first presentation where
we used these kinds of pop-art: the people was

"Videos were selected beforehand by Mr. Luporini
alone without knowledge of the other performers.

8The four performers were in a light-less room, three
of them facing the big screen and the other one facing the
public.

fascinated by the adherence between the code
and the media they see every day on their TV
sets. Since then, the use of popular and “freak”
media has become a signature of “freak coding”.

Y A Y Y . Tl Yl Ul U
o

pulapiata.com/skils /vivace/
// video time posit s
I/ v.pos = [700]
// video durationSiinfratiol [t
¥ v.pos = {1/2}

|| // audio file positions in seconds:
a.pos = [0]
// durations of audio grains in seconds:
1

| a.gdur =
/7 durations in ratios of tempo
4 /8} a9

:
/ b.pos = [1, 0]
b.gdur = [.22, .1] -
b.pos = {1/8, 1/16, 1/16, 1/32, 1/32, 1/32,

[~
[.‘ p
1/ ZAVAVAVAVANR SN LI I SVAVAVAVAV/
V., 4 !
, .

-
- -

Figure 5: Videos sampled from popular
Brazilian novels and B-movies
were used as material to at-
tract the attention of the audi-
ence to the code in the “freak-
coding” aesthetics and live
coding sub-genre.

All labMacambira.sourceforge.net members
take part in the Brazilian free software move-
ment. In a way, freak coding origins should be
looked for inside this movement. It is inher-
ent to the free software movement the contin-
ued transmission of what is known. The same
happens on the demystification of technology
and the festive and gregarious behavior. At the
performer-computer relation is where this behav-
ior becomes concrete. More than the materials
used in the live coding sessions, the performer’s
stance in relation to the computer — as already
expressed in the described presentation — is what
really subverts not just the highly technical com-
puter use but the relationship between the human
and the machine. Namely a kind of a “rock and
roll” stance. The freak coder breaks, by his own
nature, the stigma of the computer as the source
of a serious and professional posture. In the same
way, breaks with the posture of the scholar per-
former, stern and closed in herself. The freak
coding is “rock and roll”. The freak coder be-
comes Jerry Lee of technology making “techno-
pyrophagy”. He codes and cheers at same time.
The freak coder seduces through the computer
screen and by the way he codes.

104

Sao Paulo — Brazil

16th Brazilian Symposium on Computer Music

SBCM 2017

4. Conclusions and future work

Vivace was motivated by actual performances
that took place in the recently emerging Brazil-
ian live coding scene. The development of the
language was guided by this direct contact of
performers and the wider public. The language
was designed and implemented after the identifi-
cation of common patterns already used on pre-
sentations and the need for simplicity and inter-
activity. Following open source practice, Vivace
is developed by many hands from computer sci-
entists, musicians, activists and social scientists.
At present, the language is certainly not perfect
nor all-encompassing, but it does strike a useful
balance between flexibility and rigor, making it
an interesting language for artistic expression on
collaborative sessions.

It is important to note the advantage of us-
ing the Web as the platform for experimenta-
tion on live coding and other computer music ap-
proaches. Recent APIs like Web Audio together
with the rapid prototyping of multi-platform UI
and language parsers creates a prolific scenario.
Henceforth the most interesting characteristic is
the collaboration proportioned by the Web. Us-
ing collaborative editors we can expose an en-
tire music program to be edited by anyone, any-
where.

Vivace, although a “freak coding” language,
is constrained in its music expression. Having a
domain specific language as Vivace is interesting
to express some musical ideas where it is hard or
even impossible elsewhere. In this context we as-
sume Vivace as one of the many tools and a con-
tribution to create other languages and collabo-
rative systems emerging from live coding prac-
tices. In this way, we can tell that the described
performances and even Vivace are motivating the
creation of other live coding tools. Carnaval °
is one of these new realizations, it can be seen
as a “personal TV channel”. Each channel is
related to a Vivace instance, making it possible
for anyone to remix media and create their own
composition. It is a social network of live coded
remixes. Vivace, instead of an isolated piece of

9Carnaval is being conceived as free software and a col-
laborative art piece since its beginning. The first sketches
are on-line at http://automata.cc/carnaval

software is then used as a module, a part of Car-
naval.

In our experiences as performers and devel-
opers of live coding languages we can assert this
style of music realization as inspirational and
flexible. Nevertheless, we continue to search for
improvements on Vivace — and others derived
tools — to increase an already consolidated ob-
jective of live coding as a musical practice: make
computer music performance more human, more
interactive with the wider audience [3].

Future improvements are planned on Vivace:
the possibility to explicitly define large musical
arcs as nested sequences related to audio units,
the use of 3D graphics APIs to render forms —
and relate them to running audio parameters —
and text messages to the audience, and improved
UI to make the code editing more flexible and re-
active [30]. Along with the language and system
itself, this paper is a live initiative. Freak coding
as an artistic style (a sub-genre of live coding)
will be explored more deeply on future studies —
regarding its aesthetics — and in already planned
performances.

We want to end by underlining the importance
of social aspects regarding live coding. The au-
thors were not working physically close to each
other since the beginning, i.e. since the cre-
ation of Vivace and the rise of freak coding. The
performances emerged from the gathering of the
artists and programmers, which gave rise to new
tools and aesthetics. On the other hand, given the
continuous audiovisual feedback the audience
and performers have from the code, we noticed
that the potential of live coding for computer
programming demystification and introduction is
often emphasized by enthusiasts and the litera-
ture [2].

References

[1] C. Nilson. Live coding practice. Proceed-
ings of New Interfaces for Musical Expres-
sion (NIME), 2007.

[2] Marc J Rubin. The effectiveness of live-
coding to teach introductory programming.
In Proceeding of the 44th ACM technical

Sao Paulo — Brazil

105

SBCM 2017

16th Brazilian Symposium on Computer Music

(3]
[4]

[7]

[10]

[11]

[12]

[13]

[14]

symposium on Computer science educa-
tion, pages 651-656. ACM, 2013.

N. Collins. Live coding of consequence.
Leonardo, 44(3):207-211, 2011.
Guilherme Lunhani, Geraldo Magela, Vil-
son Vieira, Caleb Luporini, and Renato
Fabbri. Freak coding manifesto. http://
pontaopad.me/freakcoding, 2012.
Ricardo Fabbri Renato Fabbri, Vil-
son Vieira. Foobarbaz: Metasyntactic vari-
ables. http://wiki.nosdigitais.
teia.org.br/FooBarBaz, 2011.

G. Wang, PR. Cook, et al. Chuck: A
concurrent, on-the-fly audio programming
language. In Proceedings of the Interna-
tional Computer Music Conference, pages
219-226. Singapore: International Com-
puter Music Association (ICMA), 2003.

N. Collins, A. McLean, J. Rohrhuber, and
A. Ward. Live coding in laptop perfor-
mance. Organised Sound, 8(03):321-330,
2003.

A.R. Brown and A.C. Sorensen. aa-cell in
practice: An approach to musical live cod-
ing. In Proceedings of the International
Computer Music Conference, pages 292—
299. International Computer Music Associ-
ation, 2007.

Live Code Research Network. Interna-
tional conference on live coding. http:
//iclc.livecodenetwork.org/,
2017.

Algorave. Algorave. http:
//algorave.com, 2017.
A. Ward, J. Rohrhuber, F. Olofsson,

A. McLean, D. Griffiths, N. Collins, and
A. Alexander. Live algorithm programming
and a temporary organisation for its promo-
tion. In Proceedings of the README Soft-
ware Art Conference, 2004.

Vilson Vieira and Renato Fabbri. Vi-
vace. http://automata.github.
com/vivace, 2012.

T. Magnusson. ixi lang: a supercollider par-
asite for live coding. In Proceedings of the
International Computer Music Conference.
University of Huddersfield, 2011.

Renato Fabbri. A beat tracker.
https://sourceforge.net/p/
labmacambira/abt/, 2008.

[15]

[16]

[17]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Renato Fabbri. Figgus: Finite
groups in granular and unit synthe-
sis. http://wiki.nosdigitais.
teia.org.br/FIGGUS, 2012.

David Griffiths. (fluxus). http://www.
pawfal.org/fluxus/, 2013.

David Humphrey, Corban Brook, Al Mac-
Donald, Yury Delendik, Ricard Marxer,
and Charles Cliffe. Audio data api.
https://wiki.mozilla.org/
Audio_Data_API, 2010.

Chris Rogers. Web audio api: W3c work-
ing draft. http://www.w3.0rg/TR/
webaudio/, 2012.

Charlie Roberts. Gibber. http://
gibber.mat .ucsb.edu/, 2012.

Fritz Obermeyer. Livecoder. http://
livecoder.net, 2012.
Gabriel Florit. livecoding.io. http://

livecoding.io, 2012.

Davide Della Casa and Guy John. Live-
codelab. http://livecodelab.net,
2012.

George Stagas. Wavepot.
wavepot .com, 2015.
Zach Carter. Jison.
org, 2010.

Joseph Gentle. Sharejs. http://www.
sharejs.org, 2011.

A. McLean, D. Griffiths, N. Collins, and
G. Wiggins. Visualisation of live code. Pro-
ceedings of Electronic Visualisation and the

http://

http://Jjison.

Arts 2010, 2010.

T. Magnusson. Algorithms as scores: Cod-
ing live music. Leonardo Music Journal,
pages 19-23, 2011.

A. McLean and G. Wiggins. Texture: Vi-
sual notation for live coding of pattern. In
Proceedings of the International Computer

Music Conference, 2011.

Alexis Deveria. Can 1 use web au-
dio api. http://caniuse.com/
audio—-api/embed/, 2017.

Bret Victor. Learnable program-
ming: Designing a programming
system for wunderstanding programs.
http://worrydream.com/
LearnableProgramming/, 2012.

106

Sao Paulo — Brazil

