16th Brazilian Symposium on Computer Music

SBCM 2017

Web Audio application development with Mosaicode

Flavio Luiz Schiavoni! , Luan Luiz Gongalves'*, André Lucas Nascimento Gomes!

'Universidade Federal de Sdo Jodo Del Rei — UFSJ
Computer Science Department - DCOMP
Sao Jodo Del Rei, MG — Brazil

fls@Qufsj.edu.br, luanlg.cco@gmail.com, andgomes95@gmail.com

Abstract

The development of audio application de-
mands a high knowledge about this application
domain, traditional programming logic and pro-
gramming language. It is possible to use a Vi-
sual Programming Language to ease the appli-
cation development, including experimentations
and creative exploration of the Language. In this
paper we present a Visual Programming Envi-
ronment to create Web Audio applications called
Mosaicode. Different from other audio creation
platforms that use visual approach, our environ-
ment is a source code generator based on code
snippets to create complete applications.

1. Introduction

Since the emergence of Web Audio, the web
browser has been used as a platform to create
and process real time audio. This API leaded
several developers and artists to explore and use
the possibility of creating sounds and music in
a portable format that can reach different oper-
ating systems, architectures and devices, from
desktops to mobiles. In the raise of the Internet,
the web was used only to distribute music and
the sound interaction was possible only based on
recorded audio in digital formats. Nowadays, it
is possible to reach a new level of interaction and
use the browser as a powerful tool for sonic in-
teraction.

Web technologies provide powerful tools to
develop cross-device applications including a
high level sample-accurate sound engine and
a sophisticated layout system for visual feed-
back [1]. It also enables to incorporate ac-
celerometers, multi touch screens, gyroscopes

*Supported by UFSJ.

and other sensors available on mobile devices [2,
3, 4, 5]. It is also possible to incorporate legacy
music interfaces with the Web MIDI API [6].
Nonetheless, digital artists often have difficulty
starting their research and working with digital
art due to lack of knowledge of algorithms and
traditional programming logic.

To simplify the development of applications,
it is possible to use Visual Programming Lan-
guages (VPLs). VPL is a class of program-
ming language that allows the programmer to
develop software using a two-dimensional nota-
tion and interact with the code by the means of
a graphical representation instead of editing an
one-dimensional stream of characters, having to
memorize commands and textual syntaxes [7].
This may allow non-programmers or novice pro-
grammers to develop complete applications [8]
since VPLs can bring ease to system develop-
ment. In addition, code abstraction by means of
a diagram can bring practicality in changing the
code making them quite suitable for rapid pro-
totyping [9]. This is a known approach in arts
due to the common use of tools like Pure Data,
Max/MSP or Eyesweb.

Another way to simplify the development
of computational systems is by using domain-
specific languages (DSL) [10]. DSLs have the
knowledge of the domain embedded in their
structure and are at a higher abstraction level
than general-purpose programming languages. It
makes the process of developing systems within
your domain easier and more efficient because
DSLs require more knowledge about the domain
than programming skills [11]. For this reason,
the potential advantages of DSLs include re-
duced maintenance costs through re-use of built-
in features and increased portability, reliability,

Sao Paulo — Brazil

107

SBCM 2017

16th Brazilian Symposium on Computer Music

optimization and testability [12]. Domain Spe-
cific Languages are also common in art field
since this approach was used to develop lan-
guages like CSound, Supercollider or RTCMix.

In this paper we present Mosaicode, a visual
programming environment that can be used to
develop systems in the specific domain of digital
art combining the simplicity of visual program-
ming with code reuse of DSLs. We propose in
this work, the construction of a set of Blocks for
audio application based on JavaScript program-
ming language and the Web Audio API.

This work is organized as follows: Section 2
presents related works, Section 3 presents the
Mosaicode application, Section 4 presents the
development of a Block set to Mosaicode and
JavaScript/Web Audio, Section 5 presents initial
discussions of our research. Finally, Section 6
presents Conclusion and Future Works.

2. Related Works

From the point of view of VPLs to audio
and music programming, our related works start
with Pure Data, Max/MSP and Eyesweb. Pure
Data! is a Visual Programming Environment
for Sound and Music that plays host to GEM
environment[13] to 3D graphic processing [14].
Max/MSP? is also a music and video real time
graphical programming environment [15]. Pure
Data and Max/MSP share the same paradigm be-
ing both created by the same author, Miller Puck-
ete. Eyesweb® is a project focused on real time
analysis of body movement and gesture[16].

From the point of view of JavaScript and Web
Audio programming into an easier form of pro-
gramming, related works are several program-
ming libraries like Flocking.js[17], gibber[18],
WebCsound[19] and others.

From the point of view of Code generators,
Processing* is a DSL textual programming lan-
guage and an IDE that generates code to Graphi-

'Project Website: http://puredata.info.
2Project Website:https://cycling74.com/
products/max.
3Project website:
eyesweb_ita.php.
“Project Website: https://processing.org/.

http://www.infomus.org/

cal Art development. Beyond Processing, a sister
project called Processing.js [20] was designed to
write visualizations, images, and interactive con-
tent. There is also p5.js a JavaScript library based
on the core principles of Processing.

Another interesting code generator is
Faust[21], a purely functional programming
language to signal processing that is able to gen-
erate code to several target languages, libraries
and APIs.

The idea of using a VPL to generate web
based music application was already explored by
EarSketch [22] but in this case, a web based en-
vironment was used to create the applications
based on the Blockly programming environment.

3. About the Mosaicode

Initially developed as a Computer Vision Pro-
gramming Environment to generate C code to
OpenCV library, Mosaicode has been expanded
to other programming languages and domains.

This tool is a visual programming environ-
ment that uses the Block metaphor to create
computer programs. Blocks are organized into
groups in our environment GUI, presented on
Figure 1. A Block is the minimal source code
part and brings the abstraction of a functionality
of our desired domain. Blocks have static proper-
ties, used to set up their functionality, presented
in Figure 2.

javascript/webaudio | c/fopencv
Available Blocks

=

Divide Float
Multiply Float
Add Float
Subtract Float
~ Interface
Button
Keyboard Input
Floatvalue
Mouse Position
Print
~ Sound
Delay
white Noise
Oscillator

Speaker

ADSR

Channel Merger
Gain

Figure 1: Part of Javascript/Web Audio
Block groups

108

Sao Paulo — Brazil

16th Brazilian Symposium on Computer Music

SBCM 2017

Blocks also have dynamic properties whose
values can be set up by other Blocks. This ca-
pability to exchange information is represented
by the Blocks input/output Ports. The informa-
tion exchange by different Blocks is made creat-
ing a Connection between two or more Ports. A
Block Port has a defined type and a Connection
can be done using ports of the same type.

Properties Help
Frequency 440,00 -+

Type sine -

Figure 2: Oscillator Block static proper-
ties

The Collection of Blocks and Connections
creates a Diagram, as presented in Figure 3.

several

Figure 3: A Diagram with
Blocks interconnected.

Despite it can be seen as a Visual Program-
ming Language, like Pure Data or Max/MSP,
Mosaicode is not an interpreted environment
but a code generator. Every single Block and
Connection define code fragments and add code
Snippets to the application final code. The appli-
cation code also depends on a Code template that
defines how the Code Snippets will be merged
into the final application.

Once the Diagram is completed, it is possible
to generate the source code and to run it. Figure 4
presents a generated source code.

The tool has an interface and a plugin man-
ager that allows the creation of new components
for the environment, so the tool can be extended,
allowing the generation of source code to dif-
ferent programming languages and specific do-
mains.

C | @ view-source:file;/f/tmpfjavascript/webaudio-1491278886.62 /webaudio.html

var block 28 = context.create0scillator();
var block 28 o0 = null;
o var block 20 il = function(value){
block 26.frequency.value = value;
b

var bleck_26_i2 = function(value){
oscillator = "'
if (value < 1) eoscillator = 'square’
if (value == 1) oscillator = 'sine’;
if (value == 2) oscillator = 'sawtooth';
if (value = 2) escillater = 'triangle’;
block 26.type = oscillator;

h

// block 68 = Mouse
var block 68 o0 = [1;
var block 68 o1 = [1;

// black 66 = Multiply Float
var block_66_argl = @;

var block 66 arg2 = 0;

var block 66 08 = [];

Figure 4: Example of generated Source
Code.

4. Developing Web Audio Blocks to the
Mosaicode

Once we started developing a Block set to
JavaScript/Web Audio code generation, we in-
vestigated which Blocks could be necessary on
the environment to satisfy the Digital Arts re-
quirements. The Blocks creation was based on
other tools like Gibberish and Pure Data.

We investigated Gibberish and this library has
a collection of Audio processing classes clas-
sified into the following categories: Oscilla-
tors, Effects, Filters, Synths, Maths and Misc.
The Math group contains Add, Subtract, Mul-
tiply, Divide, Absolute Value, Square Root and
Pow [2]. The Misc group contains Sampler ob-
jects (play/record), Envelope (ADSR, AD), Line
Ramp and others. Later, authors added to this list
a Drums category[3] and GUI widgets like Slid-
ers, Buttons, Sensors, knob, Piano and other GUI
components.

We also investigated Pure Data native objects
and this tool has an interesting object list or-
ganized into categories: General, Time, Math,
MIDI and OSC, Misc, Audio Math, General Au-
dio Manipulation, Audio Oscillators And Tables
and Audio Filters.

Our last investigation included an analysis of
Web audio Native Nodes and the possibilities
that our target language and API could offer.

Native Nodes

Our first set of Blocks was done using the Web
Audio Native Nodes. It included Audio Oscilla-
tors, Audio Filters, Audio Effects and General
Audio Manipulation like Gain, Speakers, Chan-
nel Merge and Channel Splitter.

Sao Paulo — Brazil

109

SBCM 2017

16th Brazilian Symposium on Computer Music

These Nodes have two kind of configuration
parameters: Fixed parameters and a-rate Audio
Parameter. Fixed parameters, like OscillatorN-
ode.type, has fixed values like “sine”, “square”,
“sawtooth”, “triangle” and “custom”. This pa-
rameters were directly mapped to a Block static
property in Mosaicode. The other parameter
type, a-rate Audio Parameter, like OscillatorN-
ode.frequency, were mapped as an input port.
This kind of parameter has also a value field (Os-
cillatorNode.frequency.value) also mapped to a

static property.

The AudioNode channel inputs were mapped
to input ports and channel outputs were mapped
to output ports. These ports are connectible and
follow the basic idea of Node connection from
Web Audio API, presented on Figure 5.

Audio Context

Y

Input Buffer Output Buffer — Output Buffer

Figure 5: A typical workflow for Web
Audio Nodes [23].

Script Processor Node

The high-level Nodes provided by the Web
Audio API do not include all possibilities and
necessities found in our investigation. To at-
tend other sound processing features, we used a
special node called ScriptProcessorNode that en-
ables users to define complete audio systems en-
tirely in JavaScript [1].

The Script processor Node, presented in Fig-
ure 6, allows one to develop new Sound Nodes
and integrate it to the Web Audio API.

ScriptProcessorNode

\

Input Buffer Output Buffer

A

audioprocessv i
External script processes the data
Figure 6: ScriptProcessorNode used

to create Blocks like the
WhiteNoise generator[24]

Some Blocks considered important to our en-
vironment and not present as Native Nodes were
implemented using the Script Processor Node
like ADSR envelop, AD envelop, White Noise
Generator and explicit signal maths. None of
these Blocks needed static parameters.

HTML 5 and GUI

Our last set of Blocks included some HTML
5 widgets that compose the application’s GUI,
like an object to print values on the screen, get
mouse position and keyboard input, button, slid-

ers, change background color and some other
GUI features.

We also developed some Misc objects to con-
vert MIDI to frequency, convert 3 float values
into a RGB Color and convert char to float and
float to char, for example.

All these objects were implemented using ba-
sic HTML and javascript code and without using
other javascript library.

Block Connections

Once we defined a set of Blocks, the next
step on development was to create connections
between Blocks. Audio input and output data
could be easily connected since the Web Audio
API uses this programming model to connect its
Nodes.

The creation of other connections between ob-
jects, like char or float, was our first challenge.
Our former implementation with OpenCV and
C could use C pointers to pass values from one
object to other and create Blocks connections.
Since in Javascript there are no pointers, we had
to look for another approach.

The solution used was to create an array of
call-back functions to be called when some event
occurs. This solution granted a responsive in-
terface. Thus, when a GUI object action is per-
formed, it can transmit the result to a list of con-
nected Blocks and grant the value data flow.

5. Discussion

Our first set of audio Blocks were very exper-
imental and had several issues to be solved. The

110

Sao Paulo — Brazil

16th Brazilian Symposium on Computer Music

SBCM 2017

Mosaicode had only C Blocks and we never tried
to generate Javascript source code. Adapting the
tool to another language meant to create Blocks,
Ports, Connections and a Code Template to gen-
erate HTML + CSS + Javascript code. As ex-
plained before, to connect audio ports was sim-
ple but to create a interactive code with GUI ele-
ments was not simple.

The solution created solved the problem to our
small set of Blocks and ports and it is extensible
to every new developed Block. Since these issues
were solved, to create several others Blocks is a
more easy and trivial task.

Before starting the development of other
Blocks, we performed a usability test with a
group of users with audio development skills.
This test could prove that a VPL/DSL really ease
the development of Web Audio applications[25].
Also, it allowed naive users to create interesting
sounds even without specific domain knowledge.

6. Conclusion

We present in this article a proposal to sim-
plify the development of applications for the
Digital Arts domain by means of the develop-
ment of a set of Blocks to Mosaicode, a visual
programming environment that can be used to
develop systems in specific domains. This set of
Blocks were implemented using Javascript pro-
gramming language and Web Audio API, allow-
ing to develop cross-device application and enjoy
powerful tools provided by web technologies.

Beyond the simplicity of the VPLs with DSL
code reuse, developing the set of Blocks in the
Mosaicode enable the possibility of generating
the source code of applications from VPL Dia-
gram. This is the main difference between Mo-
saicode and other VPLs for the Digital Arts do-
main like Pure Data or Max/MSP.

To define the set of Blocks, we investigated
which Blocks could be necessary to the envi-
ronment to satisfy the Digital Arts requirements,
based on others tools like Gibberish and Pure
Data. We started our Block development imple-
menting the Web Audio Natives Nodes, then we
implemented some Blocks considered important
to our environment that are not present in Web

Audio Native Nodes using the the Script Proces-
sor Node. To complete the initial set of Blocks
we included some HTML 5 widgets that com-
pose the application’s GUI and some Misc ob-
jects to convert values like MIDI to frequency.

This work also discusses the Block connec-
tion, presenting a way to connect them and ex-
pand the environment creating new components.
We also cite an usability test performed before
starting the development of other Blocks, that
could confirm that a VPL/DSL really ease the de-
velopment of Web Audio applications.

Combining web technologies with Mo-
saicode, this work results in a set of Blocks that
provides a quick, simple and practical way to de-
velop cross-device applications to Digital Art do-
main.

Our Future works include expansion of the
environment developing others APIs to the Mo-
saicode like Web MIDI, WebGL, Canvas and
SVG. We also intend to generate audio code for
other programming languages.

References

[1] Charlie Roberts, Matthew Wright, JoAnn
Kuchera-Morin, and Tobias Hollerer. Rapid
creation and publication of digital musi-
cal instruments. In NIME, pages 239-242,
2014.

[2] Charles Roberts, Graham Wakefield, and
Matthew Wright. The web browser as syn-
thesizer and interface. In NIME, pages 313—
318. Citeseer, 2013.

[3] Charles Roberts, Graham Wakefield,
Matthew Wright, and JoAnn Kuchera-
Morin. Designing musical instruments for
the browser. Computer Music Journal,
39(1):27-40, 2015.

[4] Ben Taylor and Jesse Allison. Braid: A
web audio instrument builder with embed-
ded code blocks. In Proceedings of the Ist
international Web Audio Conference, 2015.

[5] Stephane Letz, Sarah Denoux, Yann Or-
larey, and Dominique Fober. Faust audio
dsp language in the web. In Proceedings
of the Linux Audio Conference (LAC-15),
Mainz, Germany, 2015.

Sao Paulo — Brazil

111

SBCM 2017

16th Brazilian Symposium on Computer Music

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Chris Wilson and Jussi Kalliokoski. Web
midi api. https://www.w3.0rg/TR/
webmidi/, 2015. Accessed: 201-09-30.
Paul E. Haeberli. Conman: A vi-
sual programming language for interactive
graphics. SIGGRAPH Comput. Graph.,
22(4):103-111, June 1988.

Anabela Gomes, Joana Henriques, and
Anténio Mendes. = Uma proposta para
ajudar alunos com dificuldades na apren-
dizagem inicial de programacdo de
computadores. Educacdo, Formagcdo &
Tecnologias-ISSN 1646-933X, 1(1):93—
103, 2008.

Daniel D Hils. Visual languages and com-
puting survey: Data flow visual program-
ming languages. Journal of Visual Lan-
guages & Computing, 3(1):69-101, 1992.
R. C. Gronback. Eclipse Modeling
Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley, New York,
2009.

Marjan Mernik, Jan Heering, and An-
thony M Sloane. When and how to develop
domain-specific languages. ACM comput-
ing surveys (CSUR), 37(4):316-344, 2005.
Arie Van Deursen and Paul Klint. Domain-
specific language design requires feature
descriptions. CIT. Journal of computing
and information technology, 10(1):1-17,
2002.

Mark Danks. Real-time image and video
processing in gem. In ICMC, 1997.

Miller Puckette et al. Pure data: another in-
tegrated computer music environment. Pro-
ceedings of the second intercollege com-
puter music concerts, pages 3741, 1996.
Matthew Wright, Richard Dudas, Sami
Khoury, Raymond Wang, and David Zi-
carelli. Supporting the sound description
interchange format in the max/msp envi-
ronment. In ICMC, 1999.

Antonio Camurri, Shuji Hashimoto, Matteo
Ricchetti, Andrea Ricci, Kenji Suzuki, Ric-
cardo Trocca, and Gualtiero Volpe. Eye-
sweb: Toward gesture and affect recogni-
tion in interactive dance and music sys-
tems. Computer Music Journal, 24(1):57-
69, 2000.

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

Colin BD Clark and Adam Tindale. Flock-
ing: a framework for declarative music-
making on the web. In SMC Conference
and Summer School, pages 1550-1557,
2014.

Charles Roberts, Matthew Wright, JoAnn
Kuchera-Morin, and Tobias Hollerer. Gib-
ber: Abstractions for creative multimedia
programming. In Proceedings of the 22nd
ACM international conference on Multime-
dia, pages 67-76. ACM, 2014.

Victor Lazzarini, Edward Costello, Steven
Yi, et al. Csound on the web. 2014.

John Resig, Ben Fry, and Casey Reas. Pro-
cessing. js, 2008.

Yann Orlarey, Dominique Fober, and
Stéphane Letz. Faust: an efficient func-
tional approach to dsp programming. New
Computational Paradigms for Computer
Music, 290, 2009.

Anand Mahadevan, Jason Freeman, and
Brian Magerko. An interactive, graphi-
cal coding environment for earsketch online
using blockly and web audio api. 2016.
Mozilla Developer Network. Web au-
dio api. https://developer.
mozilla.org/en-US/docs/Web/
API/Web_ Audio_ API, 2017. Accessed:
2017-06-30.

Mozilla Developer Network. Scriptpro-
cessornode. https://developer.
mozilla.org/pt—BR/docs/Web/
API/ScriptProcessorNode, 2017.
Accessed: 201-09-30.

Teste de usabilidade do sistema mosaicode.
In In: Simpdsio Brasileiro de Sistemas de
Informacgdo, 2017, Lavras. Anais [do] IV
Workshop de Iniciacdo Cientifica em Sis-
temas de Informacdo (WICSI), pages 5—
8, Lavras - MG: Universidade Federal de
Lavras - UFLA, 2017.

112

Sao Paulo — Brazil

Music Papers

113

