
The development of libmosaic-sound: a library for sound design and an

extension for the Mosaicode Programming Environment
Luan Luiz Gonçalves1 , Flávio Luiz Schiavoni1

1 Arts Lab in Interfaces, Computers, and Everything Else - ALICE

Computer Science Department – DCOMP

Federal University of São João del-Rei – UFSJ

luanlg.cco@gmail.com, fls@ufsj.edu.br

Abstract. Music has been influenced by digital technology

over the last few decades. With the computer, the musical

composition could trespass the use of acoustic instruments

demanding to musicians and composers a sort of computer

programming skills for the development of musical appli-

cations. In order to simplify the development of musical

applications, several tools and musical programming lan-

guages arose bringing some facilities to lay-musicians on

computer programming to use the computer to make music.

This work presents the development of a Visual Program-

ming Language (VPL) for audio applications in the Mo-

saicode programming environment, simplifying sound de-

sign and making the synthesis and manipulation of audio

more accessible to digital artists. It is also presented the

implementation of libmosaic-sound library for the specific

domain of Music Computing, which supported the VPL de-

velopment.

1 Introduction

Music has been influenced by technology for decades, es-

pecially after technological advances, bringing the idea of

music and technology together, providing new electronic

instruments and new ways of making music. With the com-

puter, musical composition goes beyond the limitations of

the artist’s body and its acoustic instruments and it started

requiring knowledge of computer programming for the de-

velopment of audio applications and compositions. Since

the skills to create a music piece can be totally different

from the ability to develop a software, digital artists can

find it difficult to start their research and work with digital

art due to non-computer programming knowledge.

Fortunately, it is possible to program a computer

application using non-textual programming paradigms.

Visual Programming Languages (VPLs) allow program-

mers to develop code using a two-dimensional notation

and interacting with the code from a graphical represen-

tation [1]. The usage of diagrams to develop applica-

tions can make the development easier and allow non-

programmers or novice programmers to develop and create

software. Furthermore, diagrammatic code abstraction can

bring practicality in changing the code, making it suitable

for rapid prototyping [2], a feature that can help even ex-

perienced programmers. Textual programming paradigms

require the use of one-dimensional stream of characters

code, demanding the memorization of commands and tex-

tual syntax while visual programming languages are more

about data flow and abstraction of software functionalities.

Another possibility to further simplify the soft-

ware development is to use a Domain-Specific (Program-

ming) Language (DSL) [3]. DSLs are at a higher abstrac-

tion level than general purpose programming languages

because they have the knowledge of the domain embedded

in its structure. It makes the process of developing applica-

tions within your domain easier and more efficient because

DSLs require more knowledge about the domain than pro-

gramming knowledge [4]. Hence, the potential advantages

of DSLs include reduced maintenance costs through re-use

of developed resources and increased portability, reliabil-

ity, optimization and testability [5].

Merging the readiness of VPLs and the higher ab-

straction of DSLs, we present the Mosaicode , a visual pro-

gramming environment focused on the development of ap-

plications for the specific domain of digital art. The devel-

opment of an application in the Mosaicode environment,

presented in Figure 1, is accomplished by the implementa-

tion of a diagram, composed by blocks and connections be-

tween them. The schematic of a diagram is used to gener-

ate a source code in a specific programming language using

a code template for it. The tool also provides resources for

creating and editing components (blocks, ports, and code

template) to the environment and a set of components is

called an extension. Thus, by the creation of new exten-

sions, the tool can be extended to generate code for differ-

ent programming languages and specific domains – build-

ing VLPs for DSLs. Hence, Mosaicode is not restricted

to generating applications only for the specific domains of

digital art, since it allows the creation of extensions for any

other specific domains.

Initially Mosaicode was developed to generate

applications to the Computer Vision domain in C/C++

based on the openCV framework. Gradually, new exten-

sions have being developed to attend the digital arts do-

main bringing together the areas needed to supply the de-

mands of this domain including the processing and syn-

thesis of audio and images, input sensors and controllers,

computer vision, computer networks and others [6]. Fig-

ure 2 shows the areas involved in the generation of applica-

tions for digital art by Mosaicode and highlights the area of

Music Computing as the area approached in this work [6].

Apart from the extension to Computer Vision in

C/C++ language, Mosaicode also has extensions to gener-

ate applications in Javascript/HTML5. These are the cur-

rent Mosaicode extensions to support the development of

applications for specific domains of digital art:

17th Brazilian Symposium on Computer Music - SBCM 2019 99

Figure 1: Mosaicode screenshot – the Visual Pro-
gramming Environment presented in
this paper.

(i) mosaicode-javascript-webaudio: implements

the natives Web Audio API Nodes including

the Script Processor Node that allows the devel-

opment of new sound nodes for the Web Au-

dio API. It also implements HTML 5 widgets

that compose the generated applications GUI [7].

Further than audio processing and synthesis with

Web Audio API, this extension also include other

HTML 5 APIs like Web Midi, Gamepad API,

Web Socket, WebRTC and others;

(ii) mosaicode-c-opencv: implements Computa-

tional Vision and Image Processing resources us-

ing openCV library for applications generated in

the C++ language;

(iii) mosaicode-c-opengl: implements Computer

Graphics resources using the openGL library

based on the C programming language;

(iv) mosaicode-c-joystick: based on C language, al-

lows to control applications using joysticks as in-

terface;

(v) mosaicode-c-gtk: supports the development of

GUI using GTK and C language.

Mosaicode

Digital Art Applications

Computer Graphic

Artificial Intelligence

Computer Vision

Computer Network

Computer Music

Virtual Reality

Source Code

Figure 2: The scheme shows the Computer Sci-
ence areas involved in the generation
of applications for digital art in the Mo-
saicode.

In order to unleash the development of audio ap-

plications in C language, this work presents an extension

for the Mosaicode environment focused on the Computer

Music domain. This extension in Mosaicode is intended

to simplify sound design (manipulation and creation of

sounds), making audio synthesis and sound processing

more accessible to digital artists. For the language of the

generated code was chosen the programming language C,

used in the libmosaic-sound library. This library is also

the result of this project, developed to assist in the devel-

opment of the extension, with the aim of facilitating this

development by reducing the effort required to implement

it.

The libmosaic-sound library was based on the

PortAudio API to access the audio input and output sys-

tem and provide resources that this API does not have im-

plemented on it. To read and write audio files, the lib-

soundfile API was also used and integrated into our library.

So, the user can effortlessly generate applications for the

Computer Music domain in C and integrate it with another

APIs available for this programming language. The library

structure provides this ease of use programming frame-

work and made it easier to implement the blocks in Mo-

saicode, resulting in the VPL for the Music Computing

domain.

2 Related tools

The tools presented below are widely used by digital artists

and are considered to be related to this research.

Processing1 is a programming language and an

Integrated Development Environment (IDE) developed by

the MIT Media Lab[8]. The programming framework

of Processing contains abstractions for various operations

with images and drawings and allows rapid prototyping

of animations in very few lines of code. The purpose of

the tool is to be used for teaching programming and for

graphic art development. From programs made in Process-

ing, called sketches, the IDE generates Java code and runs

the generated code.

Pure Data2 or simply PD is a graphical real-time

programming environment for audio and video [9] appli-

cation development. A program in PD is called apatch and

is done, according to the author himself, through “boxes”

connected by “cords”. This environment is extensible

through plugins, called externals, and has several libraries

that allow the integration of PD with sensors, Arduino, wi-

imote, OSC messages, Joysticks and others. PD is an open

source project and is widely used by digital artists. The

environment engine was even packaged as a library, called

libpd [10], which allows one to use PD as a sound engine

on other systems like cellphones applications and games.

Max/MSP3 is also a real-time graphical program-

ming environment for audio and video [11]. Developed by

Miller Puckett, the creator of Pure Data, Max is currently

maintained and marketed by the Cycling 74 company. Dif-

ferent from the other listed related tools, Max is neither

open source or free software.

EyesWeb4 is a visual programming environment

focused on real-time body motion processing and analy-

sis [12]. According to the authors, this information from

body motion processing can be used to create and control

1Available on https://processing.org/
2Available on http://www.puredata.info
3Available at https://cycling74.com/products/max
4Available on http://www.infomus.org/

100 17th Brazilian Symposium on Computer Music - SBCM 2019

sounds, music, visual media, effects and external actua-

tors. There is an EyesWeb version, called EyesWeb XMI

– for eXtended Multimodal Interaction – intended to im-

prove the ability to process and correlate data streams with

a focus on multimodality [13]. Eyesweb is proprietary free

and open source with its own license for distribution.

JythonMusic5 is a free and open source environ-

ment based on Python for interactive musical experiences

and application development that supports computer-as-

sisted composition. It uses Jython, enabling to work with

Processing, Max/MSP, PureData and other environments

and languages. It also gives access to Java API and Java

based libraries. The user can interact with external devices

such as MIDI, create graphical interfaces and also manip-

ulate images [14].

FAUST6 is a functional programming language

for sound synthesis and audio processing. A code de-

veloped in FAUST can be translated to a wide range of

non-domain specific languages such as C++, C, JAVA,

JavaScript, LLVM bit code, and WebAssembly[15].

The present project brings the advantage of Visual

programming languages, like Max/MSP and Pure Data and

the flexibility of code generation, like FAUST and Process-

ing. All together, this project can be an alternative to these

programming languages and programming environments.

3 The extension development

The development of the proposed extension to Mo-

saicode took three tasks, as depicted in Figure 3, i) a

Startup process, ii) the library development and iii) the ex-

tension development.

API definition
Programming

language
definition

Resources
definition

Startup Library
implementation

Extension
implementation

i. ii. iii.

Figure 3: Flowchart of the development method-
ology of this work splitted into three
stages (i, iii and iii).

3.1 The start up process

The first stage of this work, The start up process, was

divided into three parts: 1) choose the programming lan-

guage for the generated code; 2) choose the audio API to

aid the development and; 3) define the resources required

for a VPL/DSL that enable digital artists to develop audio

applications for the Music Computing domain and to work

with sound design.

There was a concern to choose a suitable lan-

guage for the proposed project as well as an API that can

5Available on http://jythonmusic.org
6Available on https://faust.grame.fr/

simplify the development, bringing resources already im-

plemented, like the access of the audio input and output

device, and offering good portability, free software license

and allowing the integration with other APIs, like MIDI,

OSC and sensors in the future. The process of choosing

the language and API was done reading papers and source

code of existing tools for audio processing, looking for an

efficient API that could bring up the basic resources to de-

velop audio applications.

The choice of the API also influenced the choice

of the programming language since the compatibility be-

tween both is fundamental to simplify the development of

systems. Another concern for implementing audio applica-

tions is the efficiency of the programming language. The

language chosen should support an efficient audio process-

ing, otherwise the result of the application will not be as

expected [16].

Most part of the audio APIs available to audio

applications development are developed using the C lan-

guage [17]. In addition, C is a powerful, flexible and ef-

ficient language that has the necessary resources for the

development of audio [18],so we chose this programming

language for the code generated by Mosaicode. Besides,

using the C language could bring interoperability with oth-

ers extensions present in the environment.

From several APIs available to sound develop-

ment, the PortAudio API was chosen to simplify the devel-

opment of the framework in the musical context. Being a

cross-platform API, PortAudio allows the implementation

of audio streams using the operating system audio APIs,

making it possible to write programs for Windows, Linux

(OSS/ALSA) and Mac OS X. PortAudio uses the MIT li-

cense and can be integrated with PortMidi, a library to

work with the MIDI standard [19]. Since PortAudio does

not implement access to media files, the libsoundfile API

was also used to play and record audio files.

After defining the programming language and the

audio API, we carried out a survey for a VPL/DSL re-

sources that enable digital artists to develop applications

to the Music Computing domain and work with sound de-

sign. A list of resources was made based on existing tools,

cited in Section 2, and other libraries to develop system to

the same domain, like the Gibberish [20] library.

Gibberish has a collection of audio processing

classes classified in the following categories: Oscillators,

Effects, Filters, Audio Synthesis, Mathematics and Miscel-

laneous [20]. We have also investigated the native objects

of Pure Data and this tool has a list of objects organized

in the following categories: General, Time, Mathematics,

MIDI and OSC, Miscellaneous, Audio Mathematics, Gen-

eral Audio Manipulation, Audio Oscillators and Tables and

Filters of Audio.

By meshing the categories investigated in both

tools, the resources were defined to be implemented in Mo-

saicode in blocks form. For this work we selected some of

the resources to be implemented, disregarding resources

17th Brazilian Symposium on Computer Music - SBCM 2019 101

that can be implemented by combining others, such as FM

synthesis and envelopes. Table 1 presents the resources

that have been implemented in the libmosaic-sound library

and in the Mosaicode in the blocks form.

Table 1: Resources implemented in libmosaic-
sound and in Mosaicode, for generating
audio applications.

Categories Resources/Blocks

Audio Filter Biquad filter (All-pass, Bandpass, High

-pass, Low-pass), High Shelving, Low

Shelving and Parametric Equalizer.

Audio Math Addition, Subtraction, Division and Multi-

plication.

General Audio Devices and Channel Shooter Split-

ter.

Output Record to audio files e Speaker.

Sound Sources Oscillators, White Noise, Microphone and

Playback audio files.

4 LIBMOSAIC-SOUND Library

With the programming language, API, and resources de-

fined (in stage i), the next stage was to implement these re-

sources by developing a library to work with sound design.

This library, called libmosaic-sound, had to implement the

listed resources looking for an easy way to implement au-

dio applications and requiring less programming effort to

complete this task. Existing literature, like the book DAFX

– Digital Audio Effects [21], aided the implementation of

these resources.

We developed a library to make these resources

available and easy to use, also thinking about a structure

that is adequate for the development of audio applications,

making it easier to develop it through code reuse. The li-

brary was also designed to not depend on the PortAudio

API beyond the access to the audio devices. The PortAudio

was used only to list the input and output audio interfaces

and to set up the resources of those interfaces. The lib-

soundfile API was used to read a media file and to record

audio signals to file.

For each resource, listed in Table 1, an Abstract

Data Type (ADT) was implemented following the same

pattern, as shown below:

• input: input data to be processed. ADTs can have

more than one input;

• output: processed data. ADTs can have more

than one output;

• framesPerBuffer: buffer size to be processed in

each interaction;

• process: function that processes the input data

and stores it at the output if the ADT has output;

• create: function to create/initialize the ADT.

• others: each resource has its properties and val-

ues to be stored for processing, so there are vari-

ables to store these values.

The implementation also included a names-

pace definition using the mscsound prefix added in library

functions, types and definitions to ensure that there were no

conflicts with reserved words from other libraries. Another

detail of implementation is the audio processing without

memory copy, using pointers to reference the same mem-

ory address to all processing ADTs. If one needs to pro-

cess two outputs differently, it is possible to use the ADT

called Channel Shooter Splitter, which creates a copy of

the output in another memory space. That way, there will

only be memory copy only spending when it is necessary

and clearly defined. The details of how to compile, install,

and run the code are described on README.md file, avail-

able on library’s repository at GitHub7.

Source Code at Listing 1 shows the ADT that ab-

stracts the implementation of data capture from a micro-

phone (input device):

Listing 1: ADT Definition mscsound mic t, la ab-
stracting the microphone implementa-
tion.

i f n d e f MSCSOUND MIC H

d e f i n e MSCSOUND MIC H

t y p e d e f s t r u c t {
f l o a t ∗ o u t p u t 0 ;

i n t f r a m e s P e r B u f f e r ;

vo id (*process)(void *self, float *) ;

}mscsound m i c t ;

mscsound m i c t ∗ mscsound c r e a t e m i c (

i n t f r a m e s P e r B u f f e r) ;

vo id mscsound m i c p r o c e s s () ;

e n d i f /∗ mic . h ∗ /

The implementation of an application using

the libmosaic-sound library depends on some functions

that must be defined by the developer and functions that

must be called. These functions are described below:

• mscsound callback: a function called to process

the input values for every block. This function

overrides the PortAudio callback thread copying

data read from application’s ring buffer to the Por-

taudio audio output buffer [22]. User must over-

ride this library function;

• mscsound finished: function called by the li-

brary when the callback function is done. User

must also override this function;

• mscsound initialize: function that user must call

to initialize the audio application;

• mscsound terminate: function that the user

must call to end up the audio application. This

function finish the library cleaning up memory al-

location.

As an example of the libmosaic-sound library us-

age, Figure 4 presents the running flow of a code that cap-

ture the audio with a microphone, store the audio in an

audio file and send the audio the computer speaker.

The ADTs also have some code patterns in the

library definition. Some code parts called declaration, ex-

ecution, setup and connections have been defined so one

7Available at https://github.com/Mosaicode/

libmosaic-sound/blob/master/README.md

102 17th Brazilian Symposium on Computer Music - SBCM 2019

mscsound_speaker_t
*speaker;

mscsound_mic_t *mic;

mscsound_record_t
*record;

Figure 4: The running flow of a simple audio ap-
plication developed with the ADTs of
the libmosaic-sound library.

can use these code parts to define the implementation of

the audio application, being that:

• declaration: code part to declare the ADTs used

in the code.

• execution: code part to define the call order of

the process functions of each ADT declared in the

code part declaration. This part must be included

within the Mosaicode callback function;

• setup: code part to initialize ADTs variables,

defining their values and calling their respec-

tive create functions;

• connections: part of the code to define the con-

nections between the ADTs. These connections

defines the audio processing chain associating the

output of a ADT to the input of another ADT.

For the identification of the code parts, several

examples have been created using all the library ADTs.

Looking at these examples, it was possible to identify the

characteristics of each code part listed above. The imple-

mentation code of the libmosaic-sound library and the ex-

amples are available on GitHub8.

5 MOSAICODE-C-SOUND Extension

The last stage (stage iii) consisted in the implementation of

the extension to develop audio application within the Mo-

saicode programming environment and using the library

previously developed to complete this task.

To create the extension, properties such as name,

programming language, description, command to compile,

code parts and code template implementation have been

defined. The code template informs the code generator of

the Mosaicode how to generate source code. By setting

the code template, the Mosaicode generator can interpret

the diagram and generate the desired source code. Thus,

the first step of this stage was to observe in the library and

examples developed in stage ii the code parts that are com-

mon in every example, independently of the implementa-

tion, and the unusual parts that are different in every code

example.

The code parts that are generated from the di-

agram are those cited in the development of the lib-

mosaic-sound library in Section 4 – declaration, execu-

tion, setup e connections. The remaining code will always

be the same in all implementations, so it is fixed in the code

template.

8Available at https://github.com/Mosaicode/

libmosaic-sound

The second step was to create the input/output

port types for the blocks connections, which in this case

was just one type, the sound-type port. The connec-

tion code has also been defined, establishing how an out-

put block port must be connected to an input block port.

The Mosaicode automatically generates these connections

by interpreting the block diagram. With the code template

and the port created, the last step was the implementation

of the blocks for the Mosaicode.

Each developed block contains the code abstrac-

tion of a resource defined in stage i. This strategy allows

a reuse of code by using the library developed in stage ii.

The Mosaicode blocks can have dynamic and static proper-

ties. Dynamic properties can be changed at run-time using

the block input ports. Static properties can be changed at

programming time, before generating the source code.

The implementation code of the mosaicode-c-

sound extension – blocks, ports and code template – are

available on GitHub9.

6 Results

This work resulted in a library for audio application de-

velopment packed as an extension to the Mosaicode pro-

gramming environment defining a Visual Programming

Language to musical applications development. With this

VPL, we simplified application development for Computer

Music domain, allowing to generate audio applications

and work with sound design by dragging and connecting

blocks. We hope it can increasing the facility of digital

artists to work with audio applications development.

The developed VPL brings all the resources of-

fered by the libmosaic-sound library, including simple

waveform sound sources, enabling the implementation of

audio synthesis, sound effects and envelopes to the gener-

ation of more complex sounds. It is possible to implement

classic synthesizing examples like AM, FM, additive and

subtractive synthesizers and implement other techniques of

Computer Music, without worrying about code syntax and

commands, just dragging and connecting blocks. The user

also has the option to obtain the source code of the appli-

cation defined by the diagram, having complete freedom to

modify, study, distribute and use this code.

Figure 5: Example of a Mosaicode diagram using
the mosaicode-c-sound extension.

Figure 5 shows a diagram as an example of using

the extension developed in this work. In this example we

9Available at https://github.com/Mosaicode/

mosaicode-c-sound

17th Brazilian Symposium on Computer Music - SBCM 2019 103

apply the lowpass filter (Biquad) to an audio signal cap-

tured by a microphone. The filter output is directed to the

speaker and recorded in an audio file. The code generated

from the diagram of the Figure 5 is shown next. Another

examples is available in the extension repository, already

available in this document in the Section 5.

Listing 2: Code generated from the diagram in
Figure 5.

i n c l u d e <mosaic−sound . h>

i n c l u d e <p o r t a u d i o . h>

i n c l u d e <s t d i o . h>

i n c l u d e < s t d l i b . h>

i n c l u d e <s t r i n g . h>

d e f i n e NUM SECONDS 12

d e f i n e SAMPLE RATE 44100

d e f i n e FRAMES PER BUFFER 256

/∗ D e c l a r a t i o n p a r t ∗ /

mscsound m i c t ∗ b l o c k 1 ;

mscsound b i q u a d t ∗ b l o c k 2 ;

mscsound r e c o r d t ∗ b l o c k 3 ;

mscsound s p e a k e r t ∗ b l o c k 4 ;

s t a t i c i n t mscsound c a l l b a c k (

c o n s t v o id ∗ i n p u t B u f f e r ,

vo id ∗ o u t p u t B u f f e r ,

u n s i g n e d lon g f r a m e s P e r B u f f e r ,

c o n s t P a S t r e a m C a l l b a c k T i m e I n f o

∗ t i m e I n f o ,

P a S t r e a m C a l l b a c k F l a g s s t a t u s F l a g s ,

vo id ∗ u s e r D a t a) {

f l o a t ∗ i n = (f l o a t ∗)

i n p u t B u f f e r ;

f l o a t ∗ o u t = (f l o a t ∗)

o u t p u t B u f f e r ;

(vo id) t i m e I n f o ; /∗ P r e v e n t unused

v a r i a b l e w a r n i n g s . ∗ /

(vo id) s t a t u s F l a g s ;

(vo id) u s e r D a t a ;

/∗ E x e c u t i o n and C o n n e c t i o n

p a r t s ∗ /

b lo ck 1−>p r o c e s s (b lock 1 , i n) ;

b lo ck 2−>i n p u t = b lo ck 1−>o u t p u t ;

b lo ck 2−>p r o c e s s (b l o c k 2) ;

b lo ck 3−>i n p u t = b lo ck 2−>o u t p u t ;

b lo ck 3−>p r o c e s s (b l o c k 3) ;

b lo ck 4−>i n p u t = b lo ck 2−>o u t p u t ;

b lo ck 4−>p r o c e s s (b lock 4 , o u t) ;

r e t u r n p a C o n t i n u e ;

}

s t a t i c v o i mscsound f i n i s h e d (

vo id ∗ d a t a) {
p r i n t f (” St ream Completed !\ n ”) ; }

i n t main (i n t a rgc , c h a r ∗ a rg v []) {

/∗ Se tup p a r t ∗ /

b l o c k 1 = mscsound c r e a t e m i c (

FRAMES PER BUFFER) ;

b l o c k 2 = mscsound c r e a t e b i q u a d (

1 , 2 , FRAMES PER BUFFER) ;

b lock 2−>sampleRa te = SAMPLE RATE ;

b lock 2−>c u t O f f = 3 0 0 0 . 0 ;

b lock 2−>s l o p e = 0 . 1 ;

b l o c k 3 = mscsound c r e a t e r e c o r d (

” examples / r e c o r d m i c l o w p a s s . wav ” ,

FRAMES PER BUFFER , 4 4 1 0 0) ;

b l o c k 4 = mscsound c r e a t e s p e a k e r (

FRAMES PER BUFFER) ;

vo id ∗ s t r e a m = mscsound i n i t i a l i z e (

SAMPLE RATE , FRAMES PER BUFFER) ;

p r i n t f (” Reco rd ing u n t i l

t h e E n t e r key i s p r e s s e d .\ n ”) ;

g e t c h a r () ;

mscsound t e r m i n a t e (s t r e a m) ;

r e t u r n 0 ;

}

Comparing the generated code with implementa-

tions using PortAudio API, we can notice that the audio

structure was maintained. The difference is that function

calls are made instead of implementing the abstracted code

in these functions.

7 Conclusion

This work proposes the development of an extension for

audio application development within the Mosaicode vi-

sual programming environment. This development allows

the generation of source code from diagrams composed of

blocks and connections, making the sound design more ac-

cessible to digital artists.

In the first stage of this project, a study has been

done to define the appropriate programming language and

audio APIs to complete the proposed task. There was also

a need to define the necessary resources for a DSL/VPL

that would supply the needs of digital artists in the devel-

opment of applications for the Computer Music domain.

In addition, research of the Related tools, like Pure Data,

and the Gibberish library helped to define these resources.

In the second stage we discussed the development

of the libmosaic-sound library, which supported the imple-

mentation of the mosaicode-c-sound extension for the Mo-

saicodeand allows the development of audio applications

in an easier way. The library structure is analogue the ma-

nipulation of Mosaicode blocks and connections, as if each

ADT is a block and each assignment between output and

input was a connection. This structure has also drastically

reduced the number of lines a user needs to write develop-

ing an audio application compared to the direct use of the

PortAudio API. It happens mainly because this API pro-

vides only the manipulation of input and output interfaces,

requiring the user to implement the processing of the data

read/written by the interfaces to generate the applications.

In the third stage we discussed the development

of the mosaicode-c-sound extension to work with sound

design in the Mosaicode. This extension was based on

the libmosaic-sound library, in which each block uses a

resources developed and present on the library. In this

way, only library function calls are made, making it easier

to implement the blocks and generating a smaller source

code. This implementation resulted in a VPL for the Com-

puter Music domain and, because it was developed in Mo-

104 17th Brazilian Symposium on Computer Music - SBCM 2019

saicode, allows the generation of the source code that can

be studied and modified. In addition, it contributes to Mo-

saicode with one more extension.

For implementation of the code template in Mo-

saicode, first, we created several examples of codes using

the libmosaic-sound library. These examples have been

studied in order to understand each code part and define

which parts are fixed in the code template and which parts

are generated by the extension blocks.

This project also contributed to the development

of Mosaicode, which has undergone code refactoring in

order to improve its structure and simplify its maintenance

and extension.

7.1 Future works

We intended to review the list of resources in order to ex-

pand the library and the extension for audio application.

It is also intended to link this project to other projects

of the Mosaicode development team. There are several

works in progress implementing extensions to Digital Im-

age Processing, Computer Vision, Artificial Intelligence,

Computer Networking and Virtual Reality domains. The

intention is to connect all these extensions in the environ-

ment, offering resources to generate more complex appli-

cations for the specific domains of digital art.

8 Acknowledgments

Authors would like to thanks to all ALICE members that

made this research and development possible. The authors

would like also to thank the support of the funding agencies

CNPq and FAPEMIG.

References

[1] Paul E. Haeberli. Conman: A visual programming lan-

guage for interactive graphics. SIGGRAPH Comput.

Graph., 1988.

[2] Daniel D Hils. Visual languages and computing survey:

Data flow visual programming languages. Journal of Visual

Languages & Computing, 1992.

[3] R. C. Gronback. Eclipse Modeling Project: A Domain-

Specific Language (DSL) Toolkit. Addison-Wesley, 2009.

[4] Marjan Mernik, Jan Heering, and Anthony M Sloane.

When and how to develop domain-specific languages.

ACM computing surveys (CSUR), 2005.

[5] Arie Van Deursen and Paul Klint. Domain-specific lan-

guage design requires feature descriptions. CIT. Journal of

computing and information technology, 2002.

[6] Flávio Luiz Schiavoni and Luan Luiz Gonçalves. From

virtual reality to digital arts with mosaicode. In 2017 19th

Symposium on Virtual and Augmented Reality (SVR), pages

200–206, Curitiba - PR - Brazil, Nov 2017.

[7] Flávio Luiz Schiavoni, Luan Luiz Gonçalves, and André

Lucas Nascimento Gomes. Web audio application develop-

ment with mosaicode. In Proceedings of the 16th Brazilian

Symposium on Computer Music, pages 107–114, São Paulo

- SP - Brazil, 2017.

[8] Casey Reas and Ben Fry. Processing: a programming

handbook for visual designers and artists. Mit Press, 2007.

[9] Miller S Puckette et al. Pure data. In ICMC, 1997.

[10] Peter Brinkmann, Peter Kirn, Richard Lawler, Chris Mc-

Cormick, Martin Roth, and Hans-Christoph Steiner. Em-

bedding pure data with libpd. In Proceedings of the Pure

Data Convention. Citeseer, 2011.

[11] Matthew Wright, Richard Dudas, Sami Khoury, Raymond

Wang, and David Zicarelli. Supporting the sound descrip-

tion interchange format in the max/msp environment. In

ICMC, 1999.

[12] Antonio Camurri, Shuji Hashimoto, Matteo Ricchetti, An-

drea Ricci, Kenji Suzuki, Riccardo Trocca, and Gualtiero

Volpe. Eyesweb: Toward gesture and affect recognition

in interactive dance and music systems. Computer Music

Journal, 2000.

[13] Antonio Camurri, Paolo Coletta, Giovanna Varni, and Si-

mone Ghisio. Developing multimodal interactive systems

with eyesweb xmi. In Proceedings of the 7th Interna-

tional Conference on New Interfaces for Musical Expres-

sion, NIME ’07, pages 305–308, New York, NY, USA,

2007. ACM.

[14] Bill Manaris, Blake Stevens, and Andrew R Brown. Jython-

music: An environment for teaching algorithmic music

composition, dynamic coding and musical performativity.

Journal of Music, Technology & Education, 9(1):33–56,

2016.

[15] Yann Orlarey, Dominique Fober, and Stéphane Letz. Faust:

an efficient functional approach to dsp programming. New

Computational Paradigms for Computer Music, 290:14,

2009.

[16] Z. Jiang, R.W. Allred, and J.R. Hochschild. Multi-rate dig-

ital filter for audio sample-rate conversion, 2002.

[17] Flávio Luiz Schiavoni, Antonio José Homsi Goulart,

and Marcelo Queiroz. Apis para o desenvolvimento de

aplicações de áudio. Seminário Música Ciência Tecnolo-

gia, 2012.

[18] Lars Ole Andersen. Program analysis and specialization

for the C programming language. PhD thesis, University

of Cophenhagen, 1994.

[19] Mark Nelson and Belinda Thom. A survey of real-time

midi performance. In Proceedings of the 2004 conference

on New interfaces for musical expression, pages 35–38. Na-

tional University of Singapore, 2004.

[20] Charles Roberts, Graham Wakefield, and Matthew Wright.

The web browser as synthesizer and interface. In NIME.

Citeseer, 2013.

[21] Udo Zolzer. DAFX: Digital Audio Effects. Wiley Publish-

ing, 2nd edition, 2011.

[22] Marc H Sosnick and William T Hsu. Implementing a finite

difference-based real-time sound synthesizer using gpus. In

NIME, pages 264–267, 2011.

17th Brazilian Symposium on Computer Music - SBCM 2019 105

