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Abstract. Audio-to-MIDI conversion can be used to allow

digital musical control by means of an analog instrument.

Audio-to-MIDI converters rely on fundamental frequency

estimators that are frequently restricted to a minimum de-

lay of two fundamental periods. This delay is perceptible

for the case of bass notes. In this paper, we propose a low-

latency fundamental frequency estimation method that re-

lies on specific characteristics of the electric bass guitar.

By means of physical modelling and signal acquisition, we

show that the assumptions of the method relies on gener-

alize throughout electric basses. We evaluate our method

in a dataset with musical notes played by diverse bassists.

Results show that our method outperforms the Yin method

in low-latency settings, which indicates its suitability for

low-latency audio-to-MIDI conversion of the electric bass

sound.

1 Introduction

Digital instruments and controllers commonly use the

MIDI (Musical Interface for Digital Instruments) standard

to communicate with each other. This allows combining

different synthesizers, controllers, and effect racks, which

expands the expressive possibilities related to timbres, mu-

sical performances, musical recordings and notations [1].

This toolchain can use analog instruments by means of

audio-to-MIDI converters [2].

Audio-to-MIDI converters aim at identifying the

notes played by the instrument. For such, they use a per-

ceptual model in that relates the fundamental frequency

(f0) of an audio signal to its pitch. There are many known

algorithms that aim at estimating f0, such as the autocorre-

lation [3] and the Yin method [4].

f0 estimators commonly aim at finding periodic-

ity in an audio signal fj . The periodicity is based on the

model

fj = fj+kJ , (1)

where J is the fundamental period of fj and k ∈ Z. Meth-

ods that rely on this property commonly require analyzing

at least two fundamental periods of the signal. This incurs

in a lower-bound for the latency of Audio-to-MIDI conver-

sion that can be close to 50 ms for the lowest notes (41.2

Hz) in standard 4-string electric basses. These long delays

can harm the use of basses as a MIDI controller.

In this work, we aimed at attenuating this prob-

lem using an f0 estimation method especially crafted for

the electric bass. The method exploits specific properties

of the electric bass waveform. Our method allows f0 esti-

mation with an algorithmic latency of 1.1 times the funda-

mental period of the signal.

Experimental results show that the method is ef-

fective with an error rate of 15%. This is half of error rate

of the baseline method (Yin).

2 Related work

Pitch is an auditory sensation often related to the percep-

tion of a repetition rate of a waveform [5]. The repetition

rate is called Fundamental Frequency (f0) and can be used

to decompose harmonic complex tones into sinusoidal har-

monic components whose frequencies at multiple integers

of the fundamental frequency f0, that is:

f(t) =

M
∑

m=1

am cos(2πmf0t+ φm). (2)

The relative harmonic amplitudes am are com-

monly associated to timbre differences and the fundamen-

tal frequency f0 is closely related to the sensation of pitch

[6]. In this study, we assume that the fundamental fre-

quency is the physical counterpart of the sensation of pitch,

hence estimating the fundamental frequency is equivalent

to finding the pitch of a signal.

There are several methods that aim at finding the

pitch of periodic signals, as discussed next.

2.1 Autocorrelation

A common method for estimating pitch of periodic signals

is by detecting the greatest positive peak of the autocorre-

lation function rt [3], which is calculated by:

rt(τ) =
t+W
∑

j=t+1

fjfj+τ (3)

The autocorrelation rt(τ) is a measure of the sim-

ilarity between the signal fj and a temporally shifted ver-

sion ff+τ of itself. It presents peaks in values of τ that

correspond to the fundamental periods of fj .
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2.2 Harmonic Sum Spectrum

The Harmonic Sum Spectrum is obtained by adding the

Fourier transform of the signal is to sub-sampled versions

of itself [7]. This corresponds to calculating:

Y (ω) =

M
∑

m=1

F (mω), (4)

where F is the frequency spectrum of fj , Y is the Har-

monic Sum Spectrum and M is the number of downsam-

pling processes to execute. After this processing, the ar-

gument of the global maximum of Y corresponds to the

f0.

2.3 Yin method

The Yin method was proposed by Cheveigné and Kawa-

hara [4]. It is based on the same premises as the autocor-

relation method, with the addition of a series of modifica-

tions that reduce errors. Two very important modifications

are the substitution of the autocorrelation function by the

difference function shown in Equation 5, and the applica-

tion of the a cumulative mean normalized difference func-

tion shown in Equation 6.

dt(τ) =
W
∑

j=1

(fj − fj+τ )
2. (5)

d
′

t(τ) =

{

1 , if τ = 0
dt(τ)

(1/τ)
∑

τ
j=1

dt(j)
, otherwise

}

(6)

The shortest period between the local minima of

d
′

t that are lower than a pre-defined threshold is yielded as

the fundamental period of fj .

2.4 Discussion

All the methods discussed in this section directly rely on

the periodicity property as stated in Equation 1 or the har-

monic series model shown in Equation 2. This allows them

to be applicable for the general case of finding pitch in peri-

odic signals, but bounds them to a minimum delay of twice

the fundamental period.

In this work, we propose a pitch detection method

that relies on specific characteristics of the plucked electric

bass string. This restricts our method to signals generated

by this specific instrument. However, it allows reducing

the delay to 1.1 times the fundamental period.

This reduction is critical for the real-time pitch

detection in low-pitch notes. In these notes, general-

purpose methods require a delay of around 50ms to work

properly. Our method allows detecting the same pitch with

a delay of around 30ms.

The method proposed by [2] also indicates to es-

timate f0 close to the theoretical minimum latency, i.e. the

fundamental period of the lowest observable pitch, but with

higher computational complexity.

The proposed method is based on specific prop-

erties of the plucked electric bass signal. These properties

are analyzed using a physical model, which guide its gen-

eralization possibilities. Then, the proposed model is com-

pared to the Yin method using a dataset containing record-

ings from electric bass guitars.

3 Time-domain Behavior of a Plucked

String

This section discusses the properties of the plucked string

signal that were used as basis for our f0 estimation method.

These properties were inferred by analyzing the audio sig-

nal of an electric bass strings, as shown in Section 3.1, then

the physical model discussed in Section 3.2 was used to

generalize these results, as shown in Section 3.3.

3.1 Plucking an Electric Bass String

The traditional electric bass guitar is an electro-acoustic

instrument with a body and neck made of wood and four

metal string tuned to E, A, G and D, which are fixed in a

metal bridge on the body and in the nuts of the neck. The

neck has a fingerboard with 20 to 24 frets which divides it

in tonal areas. The index and middle fingers of the right

hand are used to pluck the strings and the fingertips of the

left hand are used to hold the strings against the fretted fin-

gerboard. This changes the free length of the string, which

modulates its natural oscillation frequency.

There are magnetic pickups placed on the instru-

ments body, under the strings. They convert the string

transverse velocity at its position into an electric volt-

age. The string transverse velocity can be see as a wave

which propagates from the pluck position along the string

length, reflecting and inverting when reach the string end,

as shown in Figure 1.

Figure 1: Position and velocity of the string along
the x axis at different times t

The waveforms of the voltage signal at the pick-

ups, as shown in Figure 2, indicates repetitions of a peak

at the beginning of each cycle. In order to confirm that this

characteristic is maintained for all electric bass guitars (in-

stead of being a characteristic of the specific instrument),

the behavior of its string was mathematically modeled, as

discussed in the next section.
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3.2 Physical model

The behavior of the bass string can be modelled using an

ideal string along the coordinate x with fixed ends at x = 0
and x = L, which give us the following boundary condi-

tions:

y(x = 0, t) = 0. (7)

y(x = L, t) = 0. (8)

The string has linear density µ and is stretched

with a force T . It is initially at rest and is plucked in the

position x = xp with amplitude y(xp, 0) = A. In this

situation, the initial transverse displacement y(x, 0) can be

expressed by

y(x, t = 0) =

{

A( x
xp
) , if x < xp

A(1−
x−xp

L−xp
) , otherwise

}

(9)

and the velocity distribution y′(0, x) is

y′(x, t = 0) = 0. (10)

For a short segment of this string between x and

∆x there is a slope δy/δx = tan(θ) and a vertical force F
defined by:

F = T sin(θ)(x+∆x)− T sin(θ(x)) (11)

If y corresponds to a small displacement, θ is also

small and can be approximated using cos(θ) ≈ 1 and

sin(θ) ≈ tan(θ). This allows re-writing Equation (11) as:

F = T (
∂y

∂x
(x+∆x)−

∂y

∂x
(x)) (12)

Using the Newton’s second law:

F = m
∂2y

∂t2
(13)

and knowing that the mass for this string segment is m =
µ∆x, we have:

T (
∂y

∂x
(x+∆x)−

∂y

∂x
(x)) = µ∆x

∂2y

∂t2
(14)

dividing both sides of Equation (14) by ∆x, and

making c =
√

T/µ, it becomes the wave equation:

∂2y

∂t2
= c2

∂2y

∂x2
, x ∈ (0, L), t ∈ (0, T ] (15)

This model was used to simulate plucked strings

and the resulting waveforms were compared to measured

waveforms, as discussed in Section 3.3.

3.3 Plucked string simulation

Equation 15 was numerically solved using the finite differ-

ence method [8] and the algorithmic steps used by Lang-

tangen [9]. The Taylor series expansion was used to ap-

proximate it as:

y(x+ ∂x, t)− 2y(x, t) + y(x− ∂x, t)

∂x2
=

1

c2
y(x, t+ ∂t)− 2y(x, t) + y(x, t+ ∂t)

∂x2

(16)

Using the i, j notation such that y(x, t) = yij ,

inserting the wave number C = c∂t
∂x and rearranging Equa-

tion 16 yields:

yi,j+1 = C2yi−1,j + 2(1− C2)yi,j + C2yi+1,j − yi,j−1.
(17)

To calculate the value of this function in the first

time step, yi,j−1 must be determined. This can done using

the initial velocity in Equation 10 and Tailor’s series as

follows:

y(x, t+ ∂t)− y(x, t− ∂t)

2∂t
= 0. (18)

Rearranging equation 18 and rewriting in the i, j
notation, we find that:

yi,j−1 = yi,j+1. (19)

Finally, replacing yi,j−1 by yi,j+1 in Equation 17,

isolating yi,j−1 and dividing both sides by 2, we have:

yi,j+1 =
C2

2
yi−1,j + (1− C2)yi,j +

C2

2
yi+1,j , (20)

which is the finite difference scheme. The numerical sim-

ulation was executed over the discrete spatial domain [0,L]

equally spaced by ∂x and over the discrete temporal do-

main [0, T ] equally spaced by ∂t.

The model’s pluck position xp = L/5 and the

string length L = 0.87m were directly measured from the

strings of an electric bass. The wave velocity c was cal-

culated using c = f/(2L) [10] related to note E0. The

simulation time was define as T = 0.05s.

Over the spatial domain, the algorithm computes

yi,0 using Equation 9 and yi,1 using Equation 20 and apply-

ing the boundary conditions from Equations 7 and 8. Then,

for each element j from temporal domain, apply Equation

17 to find yi,j+1 for each element i from the spatial do-

main, applying the boundary conditions again.

The output simulated signal was retrieved from

the string velocity in the position x = L/5, approximately

the pick up position and was yielded to a 5th order low-pass

Butterworth filter with a 150Hz cutoff frequency. This

simulates the smoother bend of the string due to its stiff-

ness and the soft touch from the fingertip, which are re-

sponsible for generating tones with weaker high-frequency
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Figure 2: Simulated and measured notes played
on string E of the electric bass guitar (a)
E0 (b) A♯0 (c) F1 (d) A1

components [11]. The resulting signals were compared to

the recorded signals, as shown in Figure 2.

Figure 2 shows that the physical model generates

shapes that are similar to those found in the acquired sig-

nals. This means that the peak behavior is not a particular

behavior of the specific electric basses that were used in

our acquisitions. Rather, this behavior can be expected to

appear in electric basses in general, hence it can be used

for further steps in fundamental frequency estimation.

4 Fundamental Frequency Estimation

The simulated and measured waveforms in Figure 2 show

that there is a peak at the onset of the note and in the be-

ginning of each cycle after it. These peaks have approxi-

mately the same width, regardless of the note’s frequency,

and the note’s fundamental frequency occurs due to the rate

in which peaks appear in the signal. The proposed method

is based on these two characteristics, as follows.

The proposed method consists of the application

of the signal to an absolute difference function:

dt(τ) =
W
∑

j=1

|fj − fj+τ |, (21)

with a window size W shorter than half width of this first

peak as shown in figure 4(a). This thin window plays an

important role to make possible for the method find f0 after

1.1 times the fundamental period, whereas the Yin method

needs more than two fundamental periods [4], as shown in

Figure 3.

The f0 can be estimated from the interval between

the two bigger dips in the absolute difference function,

which are illustrated in Figure 4(b). In order to reduce er-

ror rates, the absolute difference function was normalized

to the [0, 1] range and a maximum threshold was applied.

This allows ignoring the dips whose absolute value is too

high.

If the specific string being played is known a pri-

ori, minimum and maximum frequencies can be used to

reduce errors. They allow ignoring the dips that lead to

frequency estimations out of this range.

Figure 3: Algorithmic delay for the proposed
method and for the Yin method.

Also, for frequencies higher than twice the min-

imum frequency parameter, there are more than two dips.

In this case, the fundamental period is estimated from the

average of the intervals between the dips of the difference

absolute function, as the illustrated in Figure 4(d).

Figure 4: Sample analyzed f(t) and window size
W for the E string notes: (a)G0 and
(c)G1. Absolute difference function d(τ)
and threshold: (b)G0 and (d)G1.

The next section discusses experiments regarding

the proposed method.

5 Experiments and results

5.1 Dataset

The proposed method was tested using a set of audio

recordings acquired from 3 different electric bass guitars.

Each of them was played by a different musician, and all of

them used the finger-plucking technique. All notes within

the instrument’s range were recorded from each of the gui-

tars, using two different instrument equalizations (full bass

and full treble). This yielded 528 recordings, which were

all manually cropped to start at the note onset.

5.2 Experiments

This section describes experiments that compare the pro-

posed method to the Yin method [4], as implemented by

Guyot [12]. The experiments comprised executing both

the proposed method and the Yin method to estimate the

f0 in the dataset samples.
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Figure 5: (a) Test 1 error rates . (b) Test 2 error
rates

5.2.1 Test 1 - sample length for note

In this first test, the sample length provided as input param-

eters for the algorithms are equal to 1.1× Tt1 × fs, being

Tt1 the fundamental period of the expected note and fs the

frequency of sampling of the digital audio signal. To serve

as reference, the test was repeated for the Yin method with

a sample length equal to 2.1× Tt1 × fs and is referenced

as ”Yin2” in figure 5 (a).

5.2.2 Test 2 - sample length for string

This second test is a more common application for a pitch

detector in a string instrument, where the fundamental fre-

quency should be estimated from a range of approximately

2 octaves. So, the sample length provided as input param-

eters for the algorithms are equal to 1.1× Tt2 × fs, being

Tt2 the fundamental period of the lower note from the spe-

cific string to which the recorded note belong. Also in this

case, the test was repeated for the Yin method with a sam-

ple length equal to 2.1 × Tt2 × fs and is referenced as

”Yin2” in figure 5 (b).

To determined if the method fails, the MIDI note

correspondent to the fundamental frequency estimated is

calculated as:

Mnote = 12 log

(

f0
16.351597

)

1

log(2)
+ 0.5, (22)

being f0 the estimated fundamental frequency, 16.351597

the f0 for the MIDI note = 0 and 0.5 as tolerance, as the

result will be truncated. If the calculated MIDI note differs

from the expected one, it is counted as one error.

5.3 Discussion

The error rates presented in Figure 5 show that the pro-

posed method had less than half of Yin method’s error

rate, so having a better performance estimating f0 on both

tests. As expected, the Yin method is a better solution

when sample length is longer than 2 cycles of the funda-

mental period, but for the string E of a electric bass guitar,

only the algorithmic delay should be higher than 50 ms

(2/f0 = 2, 1/41.20Hz ≈ 0, 051s), which is perceptible

for a bass player, making it harder to play a bass guitar with

real-time MIDI outputs.

The next section shows conclusive remarks.

6 Conclusion

A method based on the absolute difference function and

on the waveforms from a finger plucked strings of a elec-

tric bass guitar was presented. It was tested over 528 notes

recorded from three different bass guitars and it shows

to be capable to estimate these notes from samples with

length equal to 1.1 times their fundamental periods, while

our reference method, Yin, under the same conditions, had

double the error rate. This shorter algorithmic delay, near

the minimal theoretical delay (one fundamental period)

and low computational complexity, makes the proposed

method suitable for real time applications for the electric

bass guitar, such as a MIDI bass guitar.

However the method missed 15% of the notes on

test 2, which is a similar application, so future studies

should be made to improve this results. Also, new record-

ings in which the bass players always pluck the string

smoothly in order to keep the first cycles of the signal sim-

ilar to the modeled ones, can show an alternative way to a

MIDI bass guitar. This imposes a limited way to play in

exchange for a more precise note detection and lower la-

tency. Lastly, the method was not tested for notes played

on a vibrating string which certainly should make harder

to estimate the correct f0. This case will be approached in

future work.
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