Reflective Middleware:
The Open ORB approach and some
future directions

Fabio M. Costa

Instituto de Informatica
Universidade Federal de Goias

Roadmap
-

e Reflective systems
e Reflection in middleware
e The Open ORB architecture

e Prototypes
- Meta-ORB
— OpenORB v2 / OpenCOM

e A “Dbrief” look into future trends
e Concluding remarks

Reflective systems
c---

“A system that is capable of manipulating
representations of itself in the same way as it
manipulates representations of its domain of
application” (adapted from B.C. Smith, 82)

e A reflective system maintains a self-
representaion

- causally connected with the system’s own
Implementation

— Inspection and adaptation at runtime

Meta-level architectures
c

e Base-level
— usual functionality of the Meta-meta-
system level
e Meta-level Reification Absorption

— reflective functionality

— self-representation Meta-level

e Object-oriented concepts: Reification Absorption
- base-objects
—~ meta-objects Base-leveID

-~ Meta-object protocol (MOP)

Reflective middleware

«_
Motivation

- A standard meta-object protocol for accessing reflective
functionality (overcoming heterogeneity, etc.)

- A consistent and comprehensive approach to open up the
platform implementation

— Greater flexibility

e Base-level: usual middleware services
- as found, e.g., in CORBA
- accessed through the platform APIs

e Meta-level:

- Meta-objects that reify the platform implementation
- accessed through a MOP (meta-interface)

Principles of reflective middleware
S

e Modular platform infrastructure
- based on component models

e OS and language independence
e Pervasiveness of the reflective mechanisms

e A unified approach for (static) configuration
and (dynamic) re-configuration of the platform

e Managing the complexity of the meta-level

The Open ORB approach

Lancaster University: Blair et al

e The platform is built in terms of a component model
(modularity)

- all middleware funcionality is realised in terms of
components

-~ same component model as used for applications
e Components exist at runtime

e EXxplicit binding to connect the interfaces of remote
components

e Runtime adaptation through comprehensive
reflective meta-interfaces

Open ORB: meta-level
c---

e Split into multiple meta-space models

- Each one dealing with the reification of a different
aspect of the platform implementation

e Interfaces
e Architecture

~— Structural meta-space models
e Interception
e Resources

> Behavioural meta-space models

Open ORB: meta-level
c---

[
Architecture Interface Interception Resources meta—object
meta—-object meta—object meta-object (per address space)
Meta-level —)
: N \ \ —) |
A \ N N

\ \ N

\ N\ \\ h \
Y I e o — - — -
/ N \ h \

\ N

Base-level

Base-level
component

Base-level
component

Address Space

Open ORB prototypes
c--

e OOPP: Open ORB Python Prototype
— proof-of-concept implementation

e GOORB - Group Support for Open ORB

— flexible object group service

e Xelha
— reifies resource management in the platform

e Meta-ORB
— Integration with meta-information management

e OpenORB v2

- underlying component model (OpenCOM) + component
frameworks to build concrete configurations of middleware

Meta-ORB
]

e Implemented in Python, for rapid prototyping

e Main constructs of the programming model:
— Interfaces, components, and explicit bindings

e Configuration based on type and template definitions
— definition: interactive GUI or definition language
- stored and managed in a repository

e Re-configuration through reflective meta-interfaces

e Key points:
— reflection based on runtime available meta-information
— reflective adaptation causes type evolution
— constrained by type evolution rules
— focus on structural reflection

Meta-ORB: configuration examples

N\

O1F

interface
mappings

application

endpoint inter{ace component

endpoint nested control mapping of the
components bind\ing interface
[|
\ control
—T interface

|_Q_||_Q_|J{1_O_|H Prim. Binding H@J’H'O"FQ'}

K endpoint A

\\

10

endpoint B J

Meta-ORB: component definition
example

nodul e Exanpl e {

primtive conponent Audi oDevi ceConp {
i mpl ement ati on: Audi oDevi cel npl ;
i nterfaces: Audi oDevice audio_interf;

1
primtive conponent Vi deoDeviceConp ({
I npl ement ation: Vi deoDevicel npl;
i nterfaces: VideoDevice video_interf;

i nterface <stream> AVDevice : AudioDevice, VideoDevice {};

primtive conmponent M xer Conp {
I npl ementation: M xer Conpl npl ;
i nterfaces: Audi oDevice audio_interf;
Vi deoDevi ce video interf;
| AVDevi ce av_interf;
conponent AVDevi ceConp {
I nt ernal conponents: Audi oDevi ceConp audi o_conp;
Vi deoDevi ceConp vi deo_conp;
M xer Conp m xer _conp;

obj ect graph: éapdio_conp, apdio_interfg:énjxer_conp,
vi deo_conp, video_ interf m xer _conp,

interfaces: AVDevice av is (mxer_conp, av_interf);

}i

audi o_i nterf
video_interf

)

Meta-ORB: binding definition example
- |

nodul e Exanpl e {
bi ndi ng AVBI ndi ng {
control interfaces: Crllinterf ctrl is (CrlConp, ctrl_interf);
I nt ernal bi ndings: Audi oBi ndi ng audi o_bi ndi ng;
Vi deoBi ndi ng vi deo_bi ndi ng;

rol e AVBI ndi ngPartic {
conponents: AVSt ubConp st ub;
Audi oFi I terConp audio _filter;
Vi deoFi I terConp video filter;
target interface: AVDevice is (stub, av_interf);
cardinality: 2;
configuration:
(stub, audio_interf):(audio filter, audio_interf);
(stub, video_ interf):(audio filter, video_ interf);
(audio_filter, forward_interf): (audio_binding, audio_role);
(video_filter, forward_interf):(video_binding, video_ role);

Meta-information management
-

Type and configuration repository
e Manages type and template definitions

e Provides an interface for accessing such meta-
Information at runtime
— Inspection of
e interface types
e component definitions and compositions
e binding configurations

- type and template evolution: dynamic definition
e Structure derived from the CORBA IR

e Implementation using the Meta-Object Facility (MOF)

Multiple meta-space models

Structural reflection \ Behavioural reflection

Base-level

Base-Meta link

Structural reflection

interface
mappings

Architecture: configuration
of internal components plus

composition rules
—> Inspection and adaptation

Interface:
operations
~ and attributes

J of an interface

-~ Inspection
Fabio M. Costa

Interface Discovery:
set of interfaces of a <

component
- Inspection only

Example of architectural adaptation

I nport Met aCRB
(btain a reference to the Architecture neta-object
arch_nobj = MetaORB. get _arch_nobj (bind_ctrl.get binding nane())

btain the type of the new conponent fromthe Type Repository
new video fiter type = Mt aORB. TypeRep. | ookup_name(‘ LowBandw dt hVFi | ter’
dk_Bi ndi ng)

Pause the binding, so that reconfiguration can be perfornmed w thout
breaking its consistence
bi nd_ctrl . pause()

I nvoke the appropriate operation of the Architecture MOP to repl ace al
occurrences of the video filter conponent (in all endpoints conform ng
to the AVBIi ndingPartic role) with conponents instantiated fromthe new
conponent type
arch_nobj .rol e repl ace_conponent (AVBi ndi ngPartic, video filter,

new video filter type)
Resune nornal operation of the binding
bi nd_ctrl.resune()

Effect of reflection on type meta-
Information: Type evolution

@:u request for

adaptation -
Meta-object Meta-object
cached type new type

Base-level
object
(adapted)

Original
Type &

‘_\\/

Base level
object

Base-Meta

+—>

Instance Of
o

—————

Current work
]

e Implementation of Meta-ORB for handheld
devices
- PalmOS implementation
— Written in Java (J2ME / MIDP 1.0 and J2SE)
- Preserving the high-level programming model
-~ Minimal core mechanisms
— Configuration facilities allow for the definition of

minimal versions of the platform

e Objective: verify the effects of limited resource
environments and mobility

Meta-ORB: Java version

BF.bind(i1, iz, noma)
Binding
‘ primitiv Cépsula

@6%]{@?:@

|2

[Raq: matoda, angs]

|
Midlet Java SE'EE

Fig. 4 - Comunicacéao entre as partes da platatorma, geradas dinamicamente via serviet

OpenORB v2

e A lightweight component model, based on
Microsoft's COM: OpenCOM

+

e Component Frameworks

for each major aspect of the platform implementation (e.g.,
binding, resource management)

guide the (static) configuration of middleware
constrain runtime re-configuration
a focus on ensuring the integrity of the platform

OpenCOM component model
c_-

e Based on a subset of COM

— without distribution, persistence, security and
transactions — such aspects are built atop the
component model

e Core features
- binary-level interoperability standard (vtable)
— Microsoft’s IDL
- COM’s Globally Unigque Identifiers (GUIDSs)
- IUnknown interface (for interface discovery)

OpenCOM
c--

e Makes explicit the dependencies among
components

e Basic support for reconfiguration

-~ mechanism for connecting components
e interfaces, receptacles and connections

- mutex locks to serialise concurrent adaptations
e Pre- and post-methods (interception)

— lightweight means of adding new behaviour

- does not require reconfiguration of the existing
component architecture

iLinknown

An OpenCOM enabled component

| iedainimrcedion .

Istadrchieciure I

i Medainferface -

(Receptocies I

iLifeCyohe J

Custam infeface I

Paoimior Wygriab

Custom r

>

G|

|-'..'.-:.lm:-.m’

{Math ntevoapbon
Metalnferception

“

"'|

Recephxcins

X
£

The OpenCOM

Architecture

’
IIIJ' / i (Linknown
' - Thie DpenC O component
Iy N
-
iMamdrciiachres? Sysiem Graph
iMataintedace
10panCOM i
CoenGOM

Component frameworks
c_--

“Collection of rules and interfaces that govern the

Interaction of a set of components plugged into them.”
[Szyperski,98]

e CFsreified at runtime
- Meta-information to represent the configuration of components
- Meta-interfaces for manipulating
-~ Rules and policies that constrain adaptation

e Hierachically structured, e.g.:
— root CF: the ORB itself

- lower level CFs realise internal aspects of the ORB
- manager / managed pattern

An example middleware component
framework for OpenORB v2

\

Sinding
Layer

BT implementations

il

Binding liJ \
CF

]

Protocols Fx;’.;.l‘r_'xz-'

Comms
Layer

D Protocol [i ‘
CF

[
/ Multimedia {

) Streaming II‘I I' o
CF

Resource

Layer

L

D Buffer
Mgt. CF

Transport E Thread
Mat. CF Mat. CF

!
Buffer policies

Middleware Top CF

.,l' f
Transport plug-ins Schedulers

Granularity of adaptation
c_-

e Fine-grained
- component adaptation through low-level OpenCOM API

e Coarser-grained

- replacement of CF implementations

e e.g., replace a standard RMI binding type with one that
includes security

- change the component framework

— using the top level CF’s meta-interface to introduce new
low-level CFs or change existing ones

— allow for the definition of different middleware personalities

- e.g., the ReMMoC approach for adaptation to different
service environments

Some future trends

e Current approach to interoperability
- middleware mandates a common programming model

— Problem: there are multiple such “common” programming
models

e 1stgeneration solution: ad hoc bridges

e 2" generation solution: adaptation of the whole
programming model

- make the platform adopt different personalities in each
context (e.g., as in the ReMMoC and UIC approaches)

— limitation: one personality at a time
e A 3" generation solution? One that is more flexible?

A more flexible solution to
Interoperability

e Deal with the problem at a higher level
-~ Programming model = meta-model

e Handle programming model constructs as first-
class entities

- Through a meta-modelling architecture

- The component model can be interpreted at runtime,
If need be
e e.g., when interacting with a different services environment

e in order to “learn” how to interpret another platform’s
constructs

A meta-modelling architecture

o e e e

— e e e e e\ o o e o o o =

UML OMG-IDL Java RMI
Meta-model Meta-model Meta-model
4 A >
ToTT Tt T mT T T T T oo oo T T
—] / i —]

IDL
interfaces

Specific
application
model

M3 Layer
meta- meta- model
(meta- meta-types)

M2 Layer
meta-models
(meta-types)
(meta-meta-objects)

M1 Layer
models

(types)
(meta-objects)

MO Layer
applications
(objects)

Some Iinteresting conseguences
c--

e Makes the platform truly independent of any
particular component model

— Choose your favourite component model
e native component model: optimise for it

— Other component models can be seamlessly
accommodated

e |ssues
- performance?
- how to express the semantics of constructs?
- complete mapping between component models?

Overall Remarks
-

We have several architectures for reflective
middleware

Reflective facilities in current off-the-shelf
middleware

Standardise on meta-interfaces
— In the same way as for the usual middleware service APIs

Derive common patterns for fully reflective
middleware

Recognise the value of structured meta-information
A roadmap for the (far) future

fmc@inf.ufg.br

Fabio M. Costa

