
Reflective Middleware:
The Open ORB approach and some

future directions

Fábio M. Costa
Instituto de Informática
Universidade Federal de Goiás

Fábio M. Costa2

Roadmap

� Reflective systems
� Reflection in middleware
� The Open ORB architecture
� Prototypes

– Meta-ORB
– OpenORB v2 / OpenCOM

� A “brief” look into future trends
� Concluding remarks

Fábio M. Costa3

Reflective systems

“A system that is capable of manipulating
representations of itself in the same way as it
manipulates representations of its domain of

application” (adapted from B.C. Smith, 82)

� A reflective system maintains a self-
representaion
– causally connected with the system´s own

implementation
– inspection and adaptation at runtime

Fábio M. Costa4

Meta-level architectures

� Base-level
– usual functionality of the

system

� Meta-level
– reflective functionality

– self-representation

� Object-oriented concepts:
– base-objects
– meta-objects

– Meta-object protocol (MOP)

Base-level

Meta-level

Meta-meta-
level

Reification

Reification Absorption

Absorption

Fábio M. Costa5

Reflective middleware

Motivation
– A standard meta-object protocol for accessing reflective

functionality (overcoming heterogeneity, etc.)
– A consistent and comprehensive approach to open up the

platform implementation
– Greater flexibility

� Base-level: usual middleware services
– as found, e.g., in CORBA
– accessed through the platform APIs

� Meta-level:
– Meta-objects that reify the platform implementation
– accessed through a MOP (meta-interface)

Fábio M. Costa6

Principles of reflective middleware

� Modular platform infrastructure
– based on component models

� OS and language independence
� Pervasiveness of the reflective mechanisms
� A unified approach for (static) configuration

and (dynamic) re-configuration of the platform
� Managing the complexity of the meta-level

Fábio M. Costa7

The Open ORB approach
Lancaster University: Blair et al

� The platform is built in terms of a component model
(modularity)

– all middleware funcionality is realised in terms of
components

– same component model as used for applications

� Components exist at runtime
� Explicit binding to connect the interfaces of remote

components
� Runtime adaptation through comprehensive

reflective meta-interfaces

Fábio M. Costa8

Open ORB: meta-level

� Split into multiple meta-space models
– Each one dealing with the reification of a different

aspect of the platform implementation

� Interfaces
� Architecture

� Interception
� Resources

Structural meta-space models

Behavioural meta-space models

Fábio M. Costa9

Open ORB: meta-level

Meta−level

Base−level

Address Space

(per address space)
Resources meta−objectArchitecture

meta−object
Interface

meta−object meta−object
Interception

component
Base−level
component

Base−level

Fábio M. Costa10

Open ORB prototypes

� OOPP: Open ORB Python Prototype
– proof-of-concept implementation

� GOORB – Group Support for Open ORB
– flexible object group service

� Xelha
– reifies resource management in the platform

� Meta-ORB
– integration with meta-information management

� OpenORB v2
– underlying component model (OpenCOM) + component

frameworks to build concrete configurations of middleware

Fábio M. Costa11

Meta-ORB

� Implemented in Python, for rapid prototyping
� Main constructs of the programming model:

– interfaces, components, and explicit bindings

� Configuration based on type and template definitions
– definition: interactive GUI or definition language
– stored and managed in a repository

� Re-configuration through reflective meta-interfaces
� Key points:

– reflection based on runtime available meta-information
– reflective adaptation causes type evolution
– constrained by type evolution rules
– focus on structural reflection

Fábio M. Costa12

Meta-ORB: configuration examples

Prim. Binding

control
interface

control
interface

nested
binding

endpoint A endpoint B

endpoint
components

application
component

mapping of the
endpoint interface

X

A

B

E

C

D

Y

interface
mappings Component

(composite)

Binding

Fábio M. Costa13

Meta-ORB: component definition
example

modul e Example {
 pr i mi t i ve component AudioDeviceComp {
 i mpl ement at i on: AudioDeviceImpl;
 i nt er f aces: AudioDevice audio_interf;
 };
 pr i mi t i ve component VideoDeviceComp {
 i mpl ement at i on: VideoDeviceImpl;
 i nt er f aces: VideoDevice video_interf;
 };
 i nt er f ace <st r eam> AVDevice : AudioDevice, VideoDevice {};
 pr i mi t i ve component MixerComp {
 i mpl ement at i on: MixerCompImpl;
 i nt er f aces: AudioDevice audio_interf;
 VideoDevice video_interf;
 AVDevice av_interf;
 };
 component AVDeviceComp {
 i nt er nal component s: AudioDeviceComp audio_comp;
 VideoDeviceComp video_comp;
 MixerComp mixer_comp;

 obj ect gr aph: (audio_comp, audio_interf):(mixer_comp, audio_interf);
 (video_comp, video_interf):(mixer_comp, video_interf);

 i nt er f aces: AVDevice av i s (mixer_comp, av_interf);
 };
};

Fábio M. Costa14

Meta-ORB: binding definition example

modul e Example {
 bi ndi ng AVBinding {
 cont r ol i nt er f aces: CtrlInterf ctrl i s (CtrlComp, ctrl_interf);
 i nt er nal bi ndi ngs: AudioBinding audio_binding;
 VideoBinding video_binding;

 r ol e AVBindingPartic {
 component s: AVStubComp stub;
 AudioFilterComp audio_filter;
 VideoFilterComp video_filter;
 t ar get i nt er f ace: AVDevice i s (stub, av_interf);
 car di nal i t y: 2;
 conf i gur at i on:
 (stub, audio_interf):(audio_filter, audio_interf);
 (stub, video_interf):(audio_filter, video_interf);
 (audio_filter, forward_interf):(audio_binding, audio_role);
 (video_filter, forward_interf):(video_binding, video_role);
 };
 };
};

Fábio M. Costa15

Meta-information management

Type and configuration repository
� Manages type and template definitions
� Provides an interface for accessing such meta-

information at runtime
– inspection of

� interface types
� component definitions and compositions
� binding configurations

– type and template evolution: dynamic definition

� Structure derived from the CORBA IR
� Implementation using the Meta-Object Facility (MOF)

Fábio M. Costa16

Multiple meta-space models

Base-
level

object

Interface

Architecture

Interface
Discovery

Interception

Base-level

Meta-level

Base-Meta link

Resources

Structural reflection Behavioural reflection

Fábio M. Costa17

Structural reflection

Architecture: configuration
of internal components plus
composition rules
� inspection and adaptation

Interface Discovery:
set of interfaces of a
component
� inspection only

X

A

B

E

C

D

Y

interface
mappings

X

A

B

E

C

D

Y

Interface:
operations
and attributes
of an interface
� inspection

Fábio M. Costa18

Example of architectural adaptation

i mpor t Met aORB
Obtain a reference to the Architecture meta-object
ar ch_mobj = Met aORB. get _ar ch_mobj (bi nd_ct r l . get _bi ndi ng_name())

Obtain the type of the new component from the Type Repository
new_vi deo_f i t er _t ype = Met aORB. TypeRep. l ookup_name(‘ LowBandwi dt hVFi l t er ’ ,

dk_Bi ndi ng)

Pause the binding, so that reconfiguration can be performed without
breaking its consistence
bi nd_ct r l . pause()

Invoke the appropriate operation of the Architecture MOP to replace all
occurrences of the video filter component (in all endpoints conforming
to the AVBindingPartic role) with components instantiated from the new
component type
ar ch_mobj . r ol e_r epl ace_component (AVBi ndi ngPar t i c , v i deo_f i l t er ,

new_vi deo_f i l t er _t ype)
Resume normal operation of the binding
bi nd_ct r l . r esume()

Fábio M. Costa19

Effect of reflection on type meta-
information: Type evolution

Repository

Base-level
object

Original
Type

Meta-object

 cached type

Base-level
object

(adapted)

Meta-object

 new type

request for
adaptation

Base-Meta

InstanceOf

Fábio M. Costa20

Current work

� Implementation of Meta-ORB for handheld
devices
– PalmOS implementation
– Written in Java (J2ME / MIDP 1.0 and J2SE)
– Preserving the high-level programming model
– Minimal core mechanisms
– Configuration facilities allow for the definition of

minimal versions of the platform

� Objective: verify the effects of limited resource
environments and mobility

Fábio M. Costa21

Meta-ORB: Java version

Fábio M. Costa22

OpenORB v2

� A lightweight component model, based on
Microsoft’s COM: OpenCOM

+
� Component Frameworks

– for each major aspect of the platform implementation (e.g.,
binding, resource management)

– guide the (static) configuration of middleware
– constrain runtime re-configuration
� a focus on ensuring the integrity of the platform

� Emphasis on eficiency and adherence to standards
– CORBA, COM

Fábio M. Costa23

OpenCOM component model

� Based on a subset of COM
– without distribution, persistence, security and

transactions – such aspects are built atop the
component model

� Core features
– binary-level interoperability standard (vtable)
– Microsoft’s IDL
– COM’s Globally Unique Identifiers (GUIDs)
– IUnknown interface (for interface discovery)

Fábio M. Costa24

OpenCOM

� Makes explicit the dependencies among
components

� Basic support for reconfiguration
– mechanism for connecting components

� interfaces, receptacles and connections

– mutex locks to serialise concurrent adaptations

� Pre- and post-methods (interception)
– lightweight means of adding new behaviour
– does not require reconfiguration of the existing

component architecture

Fábio M. Costa25

The architecture of OpenCOM

The OpenCOM
Architecture

Fábio M. Costa26

Component frameworks

“Collection of rules and interfaces that govern the
interaction of a set of components plugged into them.”

[Szyperski,98]

� CFs reified at runtime
– Meta-information to represent the configuration of components
– Meta-interfaces for manipulating
– Rules and policies that constrain adaptation

� Hierachically structured, e.g.:
– root CF: the ORB itself
– lower level CFs realise internal aspects of the ORB
– manager / managed pattern

Fábio M. Costa27

An example middleware component
framework for OpenORB v2

Fábio M. Costa28

Granularity of adaptation

� Fine-grained
– component adaptation through low-level OpenCOM API

� Coarser-grained
– replacement of CF implementations

� e.g., replace a standard RMI binding type with one that
includes security

– change the component framework
– using the top level CF’s meta-interface to introduce new

low-level CFs or change existing ones
– allow for the definition of different middleware personalities
– e.g., the ReMMoC approach for adaptation to different

service environments

Fábio M. Costa29

Some future trends

� Current approach to interoperability
– middleware mandates a common programming model
– Problem: there are multiple such “common” programming

models

� 1st generation solution: ad hoc bridges
� 2nd generation solution: adaptation of the whole

programming model
– make the platform adopt different personalities in each

context (e.g., as in the ReMMoC and UIC approaches)
– limitation: one personality at a time

� A 3rd generation solution? One that is more flexible?

Fábio M. Costa30

A more flexible solution to
interoperability

� Deal with the problem at a higher level
– Programming model = meta-model

� Handle programming model constructs as first-
class entities
– Through a meta-modelling architecture
– The component model can be interpreted at runtime,

if need be
� e.g., when interacting with a different services environment

� in order to “learn” how to interpret another platform’s
constructs

Fábio M. Costa31

A meta-modelling architecture

UML

application
model

Specific

application
model

M0 Layer
applications
(objects)

MOF
Model

UML
Meta-model

OMG-IDL
Meta-model

Java RMI
Meta-model

M1 Layer
models
(types)
(meta-objects)

M2 Layer
meta-models
(meta-types)
(meta-meta-objects)

M3 Layer
meta-meta-model
(meta-meta-types)

...

...

IDL
interfaces

InstanceOf

Fábio M. Costa32

Some interesting consequences

� Makes the platform truly independent of any
particular component model
– Choose your favourite component model

� native component model: optimise for it

– Other component models can be seamlessly
accommodated

� Issues
– performance?
– how to express the semantics of constructs?
– complete mapping between component models?

Fábio M. Costa33

Overall Remarks

� We have several architectures for reflective
middleware

� Reflective facilities in current off-the-shelf
middleware

� Standardise on meta-interfaces
– in the same way as for the usual middleware service APIs

� Derive common patterns for fully reflective
middleware

� Recognise the value of structured meta-information
� A roadmap for the (far) future

Fábio M. Costa34
fmc@inf.ufg.br

