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Roadmap

� Reflective systems
� Reflection in middleware
� The Open ORB architecture
� Prototypes

– Meta-ORB
– OpenORB v2 / OpenCOM

� A “brief” look into future trends
� Concluding remarks
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Reflective systems

“A system that is capable of manipulating
representations of itself in the same way as it 
manipulates representations of its domain of 

application” (adapted from B.C. Smith, 82)

� A reflective system maintains a self-
representaion
– causally connected with the system´s own

implementation
– inspection and adaptation at runtime
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Meta-level architectures

� Base-level
– usual functionality of the

system

� Meta-level
– reflective functionality

– self-representation

� Object-oriented concepts:
– base-objects
– meta-objects

– Meta-object protocol (MOP)

Base-level 

Meta-level 

Meta-meta-
level 

Reification 

Reification Absorption 

Absorption 
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Reflective middleware

Motivation
– A standard meta-object protocol for accessing reflective

functionality (overcoming heterogeneity, etc.)
– A consistent and comprehensive approach to open up the

platform implementation
– Greater flexibility

� Base-level: usual middleware services
– as found, e.g., in CORBA
– accessed through the platform APIs

� Meta-level:
– Meta-objects that reify the platform implementation
– accessed through a MOP (meta-interface)
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Principles of reflective middleware

� Modular platform infrastructure
– based on component models

� OS and language independence
� Pervasiveness of the reflective mechanisms
� A unified approach for (static) configuration 

and (dynamic) re-configuration of the platform
� Managing the complexity of the meta-level
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The Open ORB approach
Lancaster University: Blair et al

� The platform is built in terms of a component model 
(modularity)

– all middleware funcionality is realised in terms of 
components

– same component model as used for applications

� Components exist at runtime
� Explicit binding to connect the interfaces of remote 

components
� Runtime adaptation through comprehensive 

reflective meta-interfaces
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Open ORB: meta-level

� Split into multiple meta-space models
– Each one dealing with the reification of a different 

aspect of the platform implementation

� Interfaces
� Architecture

� Interception
� Resources

Structural meta-space models

Behavioural meta-space models
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Open ORB: meta-level

Meta−level

Base−level
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component
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Open ORB prototypes

� OOPP: Open ORB Python Prototype
– proof-of-concept implementation

� GOORB – Group Support for Open ORB
– flexible object group service

� Xelha
– reifies resource management in the platform

� Meta-ORB
– integration with meta-information management

� OpenORB v2
– underlying component model (OpenCOM) + component 

frameworks to build concrete configurations of middleware
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Meta-ORB

� Implemented in Python, for rapid prototyping
� Main constructs of the programming model:

– interfaces, components, and explicit bindings

� Configuration based on type and template definitions
– definition: interactive GUI or definition language
– stored and managed in a repository

� Re-configuration through reflective meta-interfaces
� Key points:

– reflection based on runtime available meta-information
– reflective adaptation causes type evolution
– constrained by type evolution rules
– focus on structural reflection
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Meta-ORB: configuration examples

Prim. Binding 
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Meta-ORB: component definition 
example

modul e Example { 
   pr i mi t i ve component  AudioDeviceComp { 
      i mpl ement at i on: AudioDeviceImpl; 
      i nt er f aces: AudioDevice audio_interf; 
   }; 
   pr i mi t i ve component  VideoDeviceComp { 
      i mpl ement at i on: VideoDeviceImpl; 
      i nt er f aces: VideoDevice video_interf; 
   }; 
   i nt er f ace <st r eam> AVDevice : AudioDevice, VideoDevice {}; 
   pr i mi t i ve component  MixerComp { 
      i mpl ement at i on: MixerCompImpl; 
      i nt er f aces: AudioDevice audio_interf; 
                  VideoDevice video_interf; 
                  AVDevice av_interf; 
   }; 
   component  AVDeviceComp { 
      i nt er nal  component s: AudioDeviceComp audio_comp; 
                           VideoDeviceComp video_comp; 
                           MixerComp mixer_comp; 
 
      obj ect  gr aph: (audio_comp, audio_interf):(mixer_comp, audio_interf); 
                    (video_comp, video_interf):(mixer_comp, video_interf); 
 
      i nt er f aces: AVDevice av i s (mixer_comp, av_interf); 
   }; 
}; 
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Meta-ORB: binding definition example

modul e Example { 
   bi ndi ng AVBinding { 
      cont r ol  i nt er f aces: CtrlInterf ctrl i s (CtrlComp, ctrl_interf); 
      i nt er nal  bi ndi ngs: AudioBinding audio_binding; 
                         VideoBinding video_binding; 
 
      r ol e AVBindingPartic { 
         component s: AVStubComp stub; 
                     AudioFilterComp audio_filter; 
                     VideoFilterComp video_filter; 
         t ar get  i nt er f ace: AVDevice i s (stub, av_interf); 
         car di nal i t y: 2; 
         conf i gur at i on: 
            (stub, audio_interf):(audio_filter, audio_interf); 
            (stub, video_interf):(audio_filter, video_interf); 
            (audio_filter, forward_interf):(audio_binding, audio_role); 
            (video_filter, forward_interf):(video_binding, video_role); 
      }; 
   }; 
}; 
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Meta-information management

Type and configuration repository
� Manages type and template definitions
� Provides an interface for accessing such meta-

information at runtime
– inspection of

� interface types
� component definitions and compositions
� binding configurations

– type and template evolution: dynamic definition

� Structure derived from the CORBA IR
� Implementation using the Meta-Object Facility (MOF)
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Multiple meta-space models
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Structural reflection

Architecture: configuration 
of internal components plus 
composition rules
� inspection and adaptation

Interface Discovery: 
set of interfaces of a 
component
� inspection only
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Example of architectural adaptation

i mpor t  Met aORB
# Obtain a reference to the Architecture meta-object
ar ch_mobj = Met aORB. get _ar ch_mobj ( bi nd_ct r l . get _bi ndi ng_name( ) )

# Obtain the type of the new component from the Type Repository
new_vi deo_f i t er _t ype = Met aORB. TypeRep. l ookup_name( ‘ LowBandwi dt hVFi l t er ’ ,

dk_Bi ndi ng)

# Pause the binding, so that reconfiguration can be performed without
# breaking its consistence
bi nd_ct r l . pause( )

# Invoke the appropriate operation of the Architecture MOP to replace all
# occurrences of the video filter component (in all endpoints conforming
# to the AVBindingPartic role) with components instantiated from the new
# component type
ar ch_mobj . r ol e_r epl ace_component ( AVBi ndi ngPar t i c ,  v i deo_f i l t er ,

new_vi deo_f i l t er _t ype)
# Resume normal operation of the binding
bi nd_ct r l . r esume( )
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Effect of reflection on type meta-
information: Type evolution
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Current work

� Implementation of Meta-ORB for handheld 
devices
– PalmOS implementation
– Written in Java (J2ME / MIDP 1.0 and J2SE)
– Preserving the high-level programming model
– Minimal core mechanisms
– Configuration facilities allow for the definition of 

minimal versions of the platform

� Objective: verify the effects of limited resource 
environments and mobility
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Meta-ORB: Java version
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OpenORB v2

� A lightweight component model, based on 
Microsoft’s COM: OpenCOM

+
� Component Frameworks

– for each major aspect of the platform implementation (e.g., 
binding, resource management)

– guide the (static) configuration of middleware
– constrain runtime re-configuration
� a focus on ensuring the integrity of the platform

� Emphasis on eficiency and adherence to standards
– CORBA, COM
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OpenCOM component model

� Based on a subset of COM
– without distribution, persistence, security and 

transactions – such aspects are built atop the 
component model

� Core features
– binary-level interoperability standard (vtable)
– Microsoft’s IDL
– COM’s Globally Unique Identifiers (GUIDs)
– IUnknown interface (for interface discovery)
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OpenCOM

� Makes explicit the dependencies among 
components

� Basic support for reconfiguration
– mechanism for connecting components

� interfaces, receptacles and connections

– mutex locks to serialise concurrent adaptations

� Pre- and post-methods (interception)
– lightweight means of adding new behaviour
– does not require reconfiguration of the existing 

component architecture
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The architecture of OpenCOM

The OpenCOM
Architecture
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Component frameworks

“Collection of rules and interfaces that govern the 
interaction of a set of components plugged into them.” 

[Szyperski,98]

� CFs reified at runtime
– Meta-information to represent the configuration of components
– Meta-interfaces for manipulating
– Rules and policies that constrain adaptation

� Hierachically structured, e.g.:
– root CF: the ORB itself
– lower level CFs realise internal aspects of the ORB
– manager / managed pattern
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An example middleware component 
framework for OpenORB v2
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Granularity of adaptation

� Fine-grained
– component adaptation through low-level OpenCOM API

� Coarser-grained
– replacement of CF implementations

� e.g., replace a standard RMI binding type with one that 
includes security

– change the component framework
– using the top level CF’s meta-interface to introduce new 

low-level CFs or change existing ones
– allow for the definition of different middleware personalities
– e.g., the ReMMoC approach for adaptation to different 

service environments
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Some future trends

� Current approach to interoperability
– middleware mandates a common programming model
– Problem: there are multiple such “common” programming 

models

� 1st generation solution: ad hoc bridges
� 2nd generation solution: adaptation of the whole 

programming model
– make the platform adopt different personalities in each 

context (e.g., as in the ReMMoC and UIC approaches)
– limitation: one personality at a time

� A 3rd generation solution? One that is more flexible?
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A more flexible solution to 
interoperability

� Deal with the problem at a higher level
– Programming model = meta-model

� Handle programming model constructs as first-
class entities
– Through a meta-modelling architecture
– The component model can be interpreted at runtime, 

if need be
� e.g., when interacting with a different services environment

� in order to “learn” how to interpret another platform’s 
constructs
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A meta-modelling architecture

  
UML 

application 
model 

  
Specific 

application 
model 

M0 Layer 
applications 
(objects) 
 

MOF 
Model 

UML 
Meta-model 

OMG-IDL 
Meta-model 

Java RMI 
Meta-model 

M1 Layer 
models 
(types) 
(meta-objects) 

M2 Layer 
meta-models 
(meta-types) 
(meta-meta-objects) 

M3 Layer 
meta-meta-model 
(meta-meta-types) 

... 

... 

IDL 
interfaces 

InstanceOf 



Fábio M. Costa32

Some interesting consequences

� Makes the platform truly independent of any 
particular component model
– Choose your favourite component model

� native component model: optimise for it

– Other component models can be seamlessly 
accommodated

� Issues
– performance?
– how to express the semantics of constructs?
– complete mapping between component models?
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Overall Remarks

� We have several architectures for reflective 
middleware

� Reflective facilities in current off-the-shelf 
middleware

� Standardise on meta-interfaces
– in the same way as for the usual middleware service APIs

� Derive common patterns for fully reflective 
middleware

� Recognise the value of structured meta-information
� A roadmap for the (far) future
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