RO O O0O0000000T

eclips
eclipse

Debugging Distributed Object
Applications with the Eclipse Platform

Giuliano Mega and Fabio Kon

eClipsSe” “‘eclipse

Context

* Distributed Systems
« Notoriously difficult to build without appropriate assistance.
* First ones were based on message passing mechanisms.

* Parallel programming libraries (such as MPIl) made
implementation a bit easier.

 Nowadays
» Object-Oriented Middleware.

Designed primatrily for distributed (not parallel) systems.

Also a design framework.

Distributed Object Systems (DOSes).

Been around for a while.

gclipse eclipse

Motivation

* Debugging
* Older systems: less abstraction meant simpler
debuggers.

* Not much difference between the code manipulated by
the user and what actually got executed.

» Abstraction frameworks introduce code.
* not meant to be seen by the user at development time.
* little care is taken at runtime.

* Result: large discrepancies
* Middleware: development made easier; or
* Middleware: debugging made harder?

eclips

e
Bsc eclipse
lipse ellipHd

Sepee eCcll

gclipse eclipse nw ﬂlll}llallgl!

Motivation (cont.)

 Related tasks
» Testing

« Debuggers help fix errors.
» Testing is paramount for finding them.

» Setting up test scenarios is also a part of the
debugging process.
» Launching remote processes.
« Simulating failure and observing system behavior.

* Collecting remote data.
» A basis for automated testing.

gClipse "eclipse

Basics

 Debug modes
* Live debugging
 Passive (no interaction)
* Active (interaction)

* High impact on performance (in general), scales poorly.
* Accurate, “live” information.

» Offline (“dead”) debugging
« Can only be passive.
* Low overhead (comparing to live).
* Only available at the end of the execution.
* Ideal for postmortem analysis.

* Tradeoff

8T15PSe” “‘eclipse ﬂﬂy Bl(l}ll !I

Basics (cont.)

« Causality

 Becomes an issue when distributed systems are
concerned.

* Wrong causality analysis means useless trace
information or wrong state displays for live debuggers.
» What causality-related information is there to
capture?

» Caller/callee relationship [1];
* thread parent/child relationship [2];
* dynamic dependencies [3];
e properties on cuts;
. efc.

gclipse eclipse

Our approach

« Simplest idea possible

* OO Middleware allows developers to think of their
Distributed Systems as if they were multithreaded,
Object-Oriented systems.

* We want to:
» preserve that illusion at debug time.
* level interactivity with what’s provided by today’s source-level
debuggers.
* Involves capturing key points of system execution and
displaying them to the user, hiding middleware-related
code execution (debug time complexity-hiding).

&

B LSS

ETLIPEE® “bTipse | bl wﬂm}naﬂﬂﬂ

Our approach (cont.)

* Synchronous-call mechanisms

* Induce the distributed thread concept.
» Threads that span multiple machines.
« Core element for causal relations in DOSes.

o Distributed thread visualization
* Our hypothesis

« Expected extension for symbolic debuggers;
» could lead to valuable insight;
» possible source of information for other algorithms.

e

€C?1lipSe” “‘eclipse &¢ ‘ |||w ﬂlll!

C
pse
I'

Our approach (cont.)

* However
* Arguably useful [4]

* Maybe it doesn’t lead to valuable insight after all.

» Scales poorly
« Could be an issue for some applications.

* Difficult to implement
* Little support from runtime environments.

 Could be unworkable in some situations
« Too much interference.
 The “timeout” issue.

gClipse "eclipse

Initial implementation

» Targeted at Java/CORBA environments.

» Allows (*will be available shortly):
* dynamic distributed thread tracking and visualization;

* fine grained control over the flow of execution (stopping,
resuming and inspecting distributed threads);

arbitrary state inspection,
launching/killing remote processes;
on-the-fly data visualization;

stable property detection™.

* Would be perfect if

* could replay execution and,
 detect unstable predicates.

gClipse "eclipse

Eclipse

* Provides the model
» Sophisticated interface and interaction set

» Perfect environment for such a tool
« Extensive support from the framework;
* open source implementation;
* widely adopted.

 Phase 1:

« Model GUI extensions for accommodating distributed
threads;

« extensions for controlling remote applications and

* visual aids (call graphs, dynamic
distributed thread visualization

eclips

3

I eelipse

pse :Lll

8T1ipSe” “eclipse , ,.ﬂﬂyﬂm}ll afiflg

Architecture

. 3
eclipse

eclipse

m

ad
Q)

J
Q
Q)
Q
3
O
e}
O
Q
Q)
O

AR
Q
—_r
5
®
w

ii!)
J

|

L
I
{
L
L

TS
i i il
/I ihifk 28
HoE S i |

| 11
i
i i
i

I

A DI
Al

-
“'

|

N

N
Node lifecycle infrastructure

Configuration infrastructure

- XML configuration file

eclipse eclipse“lﬁﬁﬁTﬁgﬁeB%HTiﬁgé

eclips.

Flaclmnlnuy elchange

eclips
eclipse

i

eclipse

J

\

~
i"~ .

0
Q
<
&
w

Lol L L] g

“

ARNRRRERY
[

RE i

,BE
Oga"
’D

execution monitor
(extended symbolic debugger)

b v
-

irm
NAL T

NG ay iNna
s /\ I 1IN

w

/

execution flow

* This is the planned design for the data
processing architecture.

eclips
’ y . i
» Doesn’t reflect what's implemented. g PoC

eclipse

ec'tipse!lPecIipses @Tlipse eclips I:lllllllll!ly El(l:'llallul!-

Tracking distributed threads

* Involves
 Mapping local threads to distributed threads;
* assembling “virtual stacks”;
* knowing which thread is where and when.

* Virtual stacks
» Extended call stack concept,

 partially describes the causal relations inside a
single call chain,

* allows arbitrary state inspection of running
distributed object application.

gClipse "eclipse

Distributed thread tracker

y 4 -
| |
P Py P]) §
ucibuuyuci | d
NS ‘
PRy L | 1
Coririec ol = 1
y | 1
—atl” 1
V 1

ot e e (3) R \C I I
instrumented ; : \O/ . thread | . -
:) t— i i | I
~ T : — thread ! lanml : | | A = I
IZUINN e w2 N ITTTTT D g y § Pl | . | A ({ll™ M |
D Tl (/) lacal w —P: a : | ra | | e |
' - \=/ Al I - v : | VYL A | | N~ |
impilemeaenTtor : il 0 ¢ 1o o —— ——— | —— - |
M R : ‘ irl\-ullUrll‘ - I L |—' 1 s l
- N T [] | 4 - | A | 7/
A A N h 4 e | — A TN .
P \ - - JAVAN MI(2Z2)
111 AN 1 N A S b 4
Li gl AN A § N N
N~ L AN 1 N N
- N N \
A AU IR WY R A | . . »
SIS client request server request ms’rrumen’red
fhread interceptor interceptor skeleton
- J
application _ ,
code tag repository instrumented
tags local thread stubb

CIipsé PESTipse s 8T11pSe” T erTipsas

Limitations/considerations

* Works only with synchronous-call models;

* timeouts must be disabled for state inspections to
work;

* currently tied to Java/JDI;
» could produce too much overhead,

 could fail miserably with some ORB thread handling
schemes;

* limited support for remote process management.

 We *must* improve laziness of distributed
thread tracking.

gclipse eclipse @ &«

Rough “screenshot”

threads execution view
thread 1 C1 .

Bthread 2 T
% thread 2.1 C2 Jv Oan®) C)A 6
—»thread 2.2 S
c3 @

Cl(1)- method call: (C2)_method 1 A
C2(1l)- receive request (Cl): method 1 4 4
C2(2)- method call (C3): _method 5
C3(2)- receive request (C2): method 5 breakpoints
C3(3) - method call (Cl): _method 2 =
add remove replay

SCTIPsE PECTipsetiidelipset “eelinee

Availability

* More information (including source code) can

be found at the project web site:
http.://eclipse.ime.usp.br/projects/DistributedDebuqqing

* Thank you!

gClipse "eclipse

Questions?

eclips
eclipse

DS E

eclipse
LPse lipse ellips

2clips.

gClipse "eclipse

