


Context
• Distributed Systems

• Notoriously difficult to build without appropriate assistance.
• First ones were based on message passing mechanisms.
• Parallel programming libraries (such as MPI) made 

implementation a bit easier.

• Nowadays
• Object-Oriented Middleware.
• Designed primarily for distributed (not parallel) systems.
• Also a design framework.
• Distributed Object Systems (DOSes).
• Been around for a while.



Motivation
• Debugging

• Older systems: less abstraction meant simpler 
debuggers.

• Not much difference between the code manipulated by 
the user and what actually got executed.

• Abstraction frameworks introduce code. 
• not meant to be seen by the user at development time.
• little care is taken at runtime.

• Result: large discrepancies
• Middleware: development made easier; or
• Middleware: debugging made harder?



Motivation (cont.)
• Related tasks

• Testing
• Debuggers help fix errors.
• Testing is paramount for finding them.

• Setting up test scenarios is also a part of the 
debugging process.

• Launching remote processes.
• Simulating failure and observing system behavior.

• Collecting remote data.
• A basis for automated testing.



Basics
• Debug modes

• Live debugging
• Passive (no interaction)
• Active (interaction)
• High impact on performance (in general), scales poorly.
• Accurate, “live” information.

• Offline (“dead”) debugging
• Can only be passive.
• Low overhead (comparing to live).
• Only available at the end of the execution.
• Ideal for postmortem analysis.

• Tradeoff



Basics (cont.)
• Causality

• Becomes an issue when distributed systems are 
concerned.

• Wrong causality analysis means useless trace 
information or wrong state displays for live debuggers.

• What causality-related information is there to 
capture?

• Caller/callee relationship [1];
• thread parent/child relationship [2];
• dynamic dependencies [3];
• properties on cuts;
• etc.



Our approach
• Simplest idea possible

• OO Middleware allows developers to think of their 
Distributed Systems as if they were multithreaded, 
Object-Oriented systems.

• We want to:
• preserve that illusion at debug time.
• level interactivity with what’s provided by today’s source-level 

debuggers.

• Involves capturing key points of system execution and 
displaying them to the user, hiding middleware-related 
code execution (debug time complexity-hiding).



Our approach (cont.)
• Synchronous-call mechanisms

• Induce the distributed thread concept.
• Threads that span multiple machines.
• Core element for causal relations in DOSes.

• Distributed thread visualization
• Our hypothesis

• Expected extension for symbolic debuggers;
• could lead to valuable insight;
• possible source of information for other algorithms.



Our approach (cont.)
• However

• Arguably useful [4]
• Maybe it doesn’t lead to valuable insight after all.

• Scales poorly
• Could be an issue for some applications.

• Difficult to implement
• Little support from runtime environments.

• Could be unworkable in some situations
• Too much interference.
• The “timeout” issue.



Initial implementation
• Targeted at Java/CORBA environments.
• Allows (*will be available shortly):

• dynamic distributed thread tracking and visualization;
• fine grained control over the flow of execution (stopping, 

resuming and inspecting distributed threads);
• arbitrary state inspection;
• launching/killing remote processes;
• on-the-fly data visualization;
• stable property detection*.

• Would be perfect if
• could replay execution and;
• detect unstable predicates.



Eclipse
• Provides the model

• Sophisticated interface and interaction set
• Perfect environment for such a tool

• Extensive support from the framework;
• open source implementation;
• widely adopted.

• Phase 1:
• Model GUI extensions for accommodating distributed 

threads;
• extensions for controlling remote applications and
• visual aids (call graphs, dynamic 

distributed thread visualization).



Architecture



Architecture (application)



Architecture (data analysis)

• This is the planned design for the data 
processing architecture.

• Doesn’t reflect what’s implemented.



Tracking distributed threads
• Involves

• Mapping local threads to distributed threads;
• assembling “virtual stacks”;
• knowing which thread is where and when.

• Virtual stacks
• Extended call stack concept;
• partially describes the causal relations inside a 

single call chain;
• allows arbitrary state inspection of running 

distributed object application.



Distributed thread tracker



Limitations/considerations
• Works only with synchronous-call models;
• timeouts must be disabled for state inspections to 

work;
• currently tied to Java/JDI;
• could produce too much overhead;
• could fail miserably with some ORB thread handling 

schemes;
• limited support for remote process management.
• We *must* improve laziness of distributed

thread tracking.



Rough “screenshot”



Availability
• More information (including source code) can 

be found at the project web site:
http://eclipse.ime.usp.br/projects/DistributedDebugging

• Thank you!



Questions?


