Univesidade de Sao Paulo
Instituto de Matematica
e Estatistica

eElBES == -
SYINBECICIBEBEGGINGION
BISHRIBEUMEBIOBICHI@SYISHEINS =

= = '_ LAy
= ' - -
— e
- 1

——
=
=

e
= T~ e

S = —
' 9th International o =
4 Sympnsmm on Dlstrlbuted =
' Objects, Middleware and Appllcatmns - —
A —



-#-' L S e i e o

Introduction

e Distributed Systems

- Can be great
® resource sharing;
e scalability;
e robustness.
- However...
e difficult to develop;

e heterogeneity (accidental);
e distributed executions (intrinsic).

- Our focus: debugging.

_
—




. Introduction (cont.)

SR e T e e e
o

e Not surprisingly
- Distributed debugging is difficult;

e The four classical problems:

- Observability: capture of global states;

- Non-determinism: reproducibility of partially ordered
executions;

- Probe effect: probing code affects outcome;
- Maze effect: it is difficult to present the data.

e Are there solutions?

- Logical clocks (e.g. Lamport);
- Execution replay (e.g. RecPlay), reversible execution (e.g. ODB);
- Hardware probes (e.g. FDR), multi-phase replay (e.g. DIOTA);

w Algorithmic debugging, abstract visualization metaphors.

S)




; Introduction (cont.)

e But we still lack tools!

- Heterogeneity

e Debugging trails system development (Rosenberg),
e ad hoc approaches, uncoordinated efforts (Pancake),
e vendor negligence (Rosenberg),

e technology advances at a fast pace.

- Results

e Huge waste of development efforts;
e short lifespan for debugging tools;
e lack of debugging tools.

—




Introduction (cont.)

e Efforts

- High-performance computing arena

e HPD Forum, OMIS Project, Parallel Tools Consortium,
(others?).

- Distributed computing arena

e No coordinated efforts to date,
e Distributed Object Applications (DOAs),

- Also in a delicate situation.
e Curiosity: “debug” suffix

- 6 occurrences in the core CORBA specification;
" i - out of 1152 pages.

—




‘f gy i i R gl R i i e o

' Objectives

 Main objective of this work:

- Changing the world and the way people think! e
* No single effort could do this.
- Wasting efforts building yet another tool.

e That will be born dead.
e Oh wait, that's not it either.

- Build a useful tool with what is available;

e portable;
e extensible;
e simple.

'.




§ Motivation

e Remote procedure call:

- popular abstraction for IPC in distributed
systems,

- “Sacred cow status” (Tanenbaum 1988).
e Somewhat more recently:

- Distributed object middleware,

- Remote Method Invocations (RMI),

- still bearing significant limitations (Waldo),
- convenient, have their place,

«. - Wwidely used.
.9 :

"




Motivation (cont.)

e Debugging tools

- print statement,
e universal debugging tool,
e flexible, raw and limited.
- symbolic, or source-level debuggers
e on-line, interactive debugging tools,
e concept traceable to 1960 (MIT FLIT),

e possibly the most reinvented debugging concept,
e de facto standard.




‘f A e e g . il g gl R i i e o

. Motivation (cont.)
: Symbolic debuggers:

- Interesting characteristics:
e Ubiquity,
e Cognitive appeal.
- Widely used and accepted as tools.

- Including on distributed object applications (DOAs):

e Abstraction mismatch,
e Can't capture causality.
e Synchronous call, DOA-specific issues:

- coupled thread behavior,
- composability issues (deadlocks, self-deadlocks).

—




R T ———

I\/Iotivation (cont.)

e Synergy
' - Synchronous calls

e present the system as large multithreaded systém,
e abstraction disappears under the debugger.

- Modern symbolic debuggers.
- A distributed symbolic debugger

e maintains the middleware abstraction,

e collection of distributed threads,

e matches low-level mental picture,

e familiar tool;

<2 built on top of existing symbolic debuggers.
Y




%_Distributed Threads
~e Distributed thread (DT)




Distributed Threads (cont.) ™ ‘

e R T,
: o

. e Formal characterization

- A DT is sequence of snapshots, where;

- each snapshot is a sequence of “local” threads
(LTs),

| - all DTs begin with a “trivial snapshot”.
| » Additional constraints
- The “single participation rule”:
* blocked local threads cannot be reused,

e |ocal thread services one call at a time;
» most implementations comply to this rule (some do not).

—~




S

- The current snapshot of a DT changes when™"

I i

e

PR |
Ir:_.-'-,\.. 5
ol

e A new remote call begins being handled;

e some remote call returns; :

e some reply message is lost (breaks DT in two); |
e some node fails (breaks DT in possibly many pieces).

Sz il L1} S,= {l L}

i e

R

S
1] g il ol

A 4
e
e
.
e e
_ ;;;,;f

T /‘ sty




‘f A e e g . il g gl R i i e o

e .

'

' The Global Online Debu-“_“" ”

* Distributed symbolic debugger;

: e [Tracks snapshot shifts;
. « Composition of symbolic debuggers:
- Maps:

¢ |[nteractive commands on DTs into interactive commands
on LTs.

e State information from LTsinto state information of DTs.




4

Representation

e But DTs donot really exist.

- We must identify them somehow;
__ - before we can track/interact with them.
. » Options:
| - representation at the meta level (debugger side);
* required;
- representation at the base level (debuggee side);

e portability/performance,;
e monitoring;
e execution replay and distributed algorithms.




Representation (base-lel) "

- Each local thread has a unique id;

- *middleware requirement: passing of context
information (metadata) with each request.

distributed
thread id




Tracking

-« Normal shifts:

o
= o
Dol ol

A A
e e e

- . e
" A

middleware

Client Type 2:
Server Return




‘Tracking (cont.)

.« Shifts because of lost reply messag'es:”'

- Client detects "abnormal unblockings™: -
e blocked local thread returns;

e no reply token = no reply message (or middleware bug).

Type1: Remote Object
Server Receive 1

middleware

\ reply token
Client Type 3: : S

Abnormal s Typzzi
unblocking erver Return




;Tracking (cont.)

'_: e Shifts because of node deaths

- Not issued from the application;
- local process controller;

- debugging clients (meta-level);
- failure detector (meta-level).




R e

0.D.

Observer
(global agent)

application
process
Debug probe (local agent)

fo
0
(@)
-
®)
D
O

ine

e Architectural overview of the G

The Global On-|




4

Local agents

e Composed of:

- Symbolic debugger that can be remotely
operated,;

- complementary instrumentation code.
. o Uses two wire protocols:

- Symbolic debugger protocol (e.g. JDWP);

- Distributed debugging protocol (DDWP);

e language-independent (except for opaque information);
e mainly for passing the tracking events we described.




Java/CORBA local agents
' - Somewhat straightforward;

e dynamic instrumentation (BCEL);

- interceptors added at each Runnable.run();

- at each proxy (tracking, id passing);

- at each remote object (tracking, id passing, tokens);
- interceptors call debug library;

- ids passed by combining TSS and service contexts.

thread-specific

instrumentation storage (TSS)

, , interceptor (1)
application

remote symbolic
process

debugger
symbolic debugger
wire protocol

e ":'*‘ in-process
debug library

CORBA client-

instrumentation side interceptor
interceptor (2)

instrumentation
interceptor (3)
CORBA server-
side interceptor




Global agent (GA)

- “Composite debugger’;

e based on the generic Eclipse meta-model;

* language-agnostic object-model for reifying runtime
entities;

e reification of a virtual process, based on dlstrlbuted
threads.

language- | Eclipse debug framework

independent standard interfaces

portion distributed-thread-based debugger

extended interfaces
language-specific debugger client

debugger-specific wire protocol




f L R L S g L o H e o e o LA " _ ==

Auxiliary activities
. Process management infrastructure

- Management of remote process,

e GA deploys small server via SSH (per node);

- forwards streams to and from remote processes;
- forward death events:
- heartbeats.

e | aunch constraint language

- debugger + process control servers;

- synchronization of processes during launch;

- subset of the execution replay problem;

- one-click distributed launch;

- useful for assembly of debugging (or testing) scenarios.




‘f A e e g . il g gl R i i e o

'

Automatic analysis

* Limited forms

- Non-declared CORBA exceptions;

e avoid the CORBA.UNKNOWN;
e halts request at the server-side and warns user.

- Distributed stack overflows;
e system “just hangs’;
e can be a pain to identify;
e simple to detect (mostly).

- Distributed deadlocks;

e on-demand analysis.

—




s

f;Adding support ’

. » | anguage Requirements
- Debugging backend;
e must be remotely operable.
- Eclipse debugging client;
e implement from the start;
e adapt existing.
- Thread-specific storage mechanism,;
- instrumentation of proxies and remote objects;
e required, but doesn't have to be dynamic.




‘f gy i i R gl R i i e o

S

. Adding support (cont.
Er: e Application and Middleware Re.quirémenfﬁ.
- Application |

e Must be based on distributed objects.
- Proxies + remote objects.
e Must use synchronous calls.

- Asynchronous calls are supported;
- but benefits are less appealing.

- Middleware
e Should provide ways to pass context information.




. Conclusion
L« The G.O.D.:

- iIs a debugger made of debuggers;

- virtual process with distributed threads;
- simple;

- portable:

e |ocal agents: debugger + instrumentation;
e global agent: debugging client (adapt existing);




‘f A e e g . il g gl R i i e o

g S

'

Conclusion (cont.) '

= o Useful:
- DTs capture snapshots of causal relationships;

- Help reduce the maze effect;
e The DT-based symbolic debugger:

- eliminates the abstraction mismatch;

- hides useless information;

- allows the user to focus on his application;
- allows the user to drill-down.

* Process management:
- streamlines workflow, saving time and effort.
e Automatic analysis:
" “..__ " reduces burden on the user under some circumstances.

—




\Future work

i: * Porting.
.« Classical problems:
. - we barely scratched them:

- visualization:

e more scalable mechanisms;

e more automatic analysis mechanisms;

e DT are too low-level (maze of DTs comes fast).
- probe effect and non-determinism:

e too difficult to tackle in a portable manner;
e threads + shared memory.

'.




s

" Thank you!

* Help is appreciated!
. * Source-code is available under the EPL.

|« Project web site (there's a screencast there):
| - http://god.incubadora.fapesp.br

. e Google and eclipse.org:

- Summer of Code Grant

-« IBM:

- Eclipse Innovation Grant

—



http://god.incubadora.fapesp.br/

