


Introduction
● Distributed Systems
–Can be great

● resource sharing;
● scalability;
● robustness.

–However...
● difficult to develop;
● heterogeneity (accidental);
● distributed executions (intrinsic).

–Our focus: debugging.



Introduction (cont.)
● Not surprisingly
–Distributed debugging is difficult;

● The four classical problems:
–Observability: capture of global states; 
–Non-determinism: reproducibility of partially ordered 

executions;
–Probe effect: probing code affects outcome;
–Maze effect: it is difficult to present the data.

● Are there solutions?
–Logical clocks (e.g. Lamport);
–Execution replay (e.g. RecPlay), reversible execution (e.g. ODB);
–Hardware probes (e.g. FDR), multi-phase replay (e.g. DIOTA);
–Algorithmic debugging, abstract visualization metaphors.



Introduction (cont.)
● But we still lack tools!
–Heterogeneity

● Debugging trails system development (Rosenberg),
● ad hoc approaches, uncoordinated efforts (Pancake),
● vendor negligence (Rosenberg),
● technology advances at a fast pace.

–Results
● Huge waste of development efforts;
● short lifespan for debugging tools;
● lack of debugging tools.



Introduction (cont.)
● Efforts
–High-performance computing arena

● HPD Forum, OMIS Project, Parallel Tools Consortium, 
(others?).

–Distributed computing arena
● No coordinated efforts to date,
● Distributed Object Applications (DOAs),

–Also in a delicate situation.
● Curiosity: “debug” suffix

–6 occurrences in the core CORBA specification;
–out of 1152 pages.



Objectives
● Main objective of this work:
–Changing the world and the way people think!

● No single effort could do this.
–Wasting efforts building yet another tool.

● That will be born dead.
● Oh wait, that's not it either.

–Build a useful tool with what is available;
● portable;
● extensible;
● simple.



Motivation
● Remote procedure call:

– popular abstraction for IPC in distributed 
systems,

– “Sacred cow status” (Tanenbaum 1988).
● Somewhat more recently:

–Distributed object middleware,
–Remote Method Invocations (RMI),
– still bearing significant limitations (Waldo),
– convenient, have their place,
–widely used.



Motivation (cont.)
● Debugging tools
–print statement,

● universal debugging tool,
● flexible, raw and limited.

–symbolic, or source-level debuggers
● on-line, interactive debugging tools,
● concept traceable to 1960 (MIT FLIT),
● possibly the most reinvented debugging concept,
● de facto standard.



Motivation (cont.)
● Symbolic debuggers:
– Interesting characteristics:

● Ubiquity,
● Cognitive appeal.

–Widely used and accepted as tools.
– Including on distributed object applications (DOAs):

● Abstraction mismatch,
● Can't capture causality.
● Synchronous call, DOA-specific issues:

–coupled thread behavior,
–composability issues (deadlocks, self-deadlocks). 



Motivation (cont.)
● Synergy
–Synchronous calls 

● present the system as large multithreaded system,
● abstraction disappears under the debugger.

–Modern symbolic debuggers.
–A distributed symbolic debugger

● maintains the middleware abstraction,
● collection of distributed threads,
● matches low-level mental picture,
● familiar tool;
● built on top of existing symbolic debuggers.



Distributed Threads
● Distributed thread (DT)
–Virtual thread that crosses multiple nodes.



Distributed Threads (cont.)

● Formal characterization
–A DT is sequence of snapshots, where;
–each snapshot is a sequence of “local” threads 

(LTs),
–all DTs begin with a “trivial snapshot”.

● Additional constraints
–The “single participation rule”:

● blocked local threads cannot be reused;
● local thread services one call at a time;
● most implementations comply to this rule (some do not).



Distributed Threads (cont.)
–The current snapshot of a DT changes when:

● A new remote call begins being handled;
● some remote call returns;
● some reply message is lost (breaks DT in two);
● some node fails (breaks DT in possibly many pieces).



The Global Online Debugger

● Distributed symbolic debugger;
● Tracks snapshot shifts;
● Composition of symbolic debuggers;
–Maps:

● Interactive commands on DTs into interactive commands 
on LTs.

● State information from LTs into state information of DTs.



Representation
● But DTs do not really exist.
–We must identify them somehow;
–before we can track/interact with them.

● Options:
–representation at the meta level (debugger side);

● required;
–representation at the base level (debuggee side);

● portability/performance;
● monitoring;
● execution replay and distributed algorithms.



Representation (base-level)

–Each local thread has a unique id;
–first thread in the call chain propagates its id;
–*middleware requirement: passing of context

information (metadata) with each request.



Tracking
● Normal shifts:
–Two types of events: server receive, server 

return.



Tracking (cont.)
● Shifts because of lost reply messages:
–Client detects “abnormal unblockings”:

● blocked local thread returns;
● no reply token = no reply message (or middleware bug).



Tracking (cont.)
● Shifts because of node deaths
–Not issued from the application;
–local process controller;
–debugging clients (meta-level);
–failure detector (meta-level).



The Global On-line Debugger 

● Architectural overview of the G.O.D.:



Local agents
● Composed of:
–Symbolic debugger that can be remotely

operated;
–complementary instrumentation code.

● Uses two wire protocols:
–Symbolic debugger protocol (e.g. JDWP);
–Distributed debugging protocol (DDWP);

● language-independent (except for opaque information);
● mainly for passing the tracking events we described.



Java/CORBA local agents

–Somewhat straightforward;
● dynamic instrumentation (BCEL);

– interceptors added at each Runnable.run();
–at each proxy (tracking, id passing);
–at each remote object (tracking, id passing, tokens);
– interceptors call debug library;
– ids passed by combining TSS and service contexts.



Global agent (GA)
–“Composite debugger”;

● based on the generic Eclipse meta-model;
● language-agnostic object-model for reifying runtime 

entities;
● reification of a virtual process, based on distributed 

threads.



Auxiliary activities
● Process management infrastructure
–Management of remote process;

● GA deploys small server via SSH (per node);
– forwards streams to and from remote processes;
– forward death events;
–heartbeats.

● Launch constraint language
–debugger + process control servers;
–synchronization of processes during launch;
–subset of the execution replay problem;
–one-click distributed launch;
–useful for assembly of debugging (or testing) scenarios.



Automatic analysis
● Limited forms
–Non-declared CORBA exceptions;

● avoid the CORBA.UNKNOWN;
● halts request at the server-side and warns user.

–Distributed stack overflows;
● system “just hangs”;
● can be a pain to identify;
● simple to detect (mostly).

–Distributed deadlocks;
● on-demand analysis.



Adding support
● Language Requirements
–Debugging backend;

● must be remotely operable.
–Eclipse debugging client;

● implement from the start;
● adapt existing. 

–Thread-specific storage mechanism;
–instrumentation of proxies and remote objects;

● required, but doesn't have to be dynamic.



Adding support (cont.)
● Application and Middleware Requirements
–Application

● Must be based on distributed objects.
–Proxies + remote objects.

● Must use synchronous calls.
–Asynchronous calls are supported;
–but benefits are less appealing.

–Middleware
● Should provide ways to pass context information.



Conclusion
● The G.O.D.:
–is a debugger made of debuggers;
–virtual process with distributed threads;
–simple;
–portable:

● local agents: debugger + instrumentation;
● global agent: debugging client (adapt existing);



Conclusion (cont.)
● Useful:
–DTs capture snapshots of causal relationships;
–Help reduce the maze effect;

● The DT-based symbolic debugger:
–eliminates the abstraction mismatch;
–hides useless information;
–allows the user to focus on his application;
–allows the user to drill-down.

● Process management:
–streamlines workflow, saving time and effort.

● Automatic analysis:
– reduces burden on the user under some circumstances.



Future work
● Porting.
● Classical problems:
–we barely scratched them;
–visualization:

● more scalable mechanisms;
● more automatic analysis mechanisms;
● DT are too low-level (maze of DTs comes fast).

–probe effect and non-determinism:
● too difficult to tackle in a portable manner;
● threads + shared memory.



Thank you!
● Help is appreciated!
● Source-code is available under the EPL.
● Project web site (there's a screencast there):
–http://god.incubadora.fapesp.br

● Google and eclipse.org:
–Summer of Code Grant

● IBM:
–Eclipse Innovation Grant

http://god.incubadora.fapesp.br/

