

Clean Code
A Handbook of Agile Software Craftsmanship

Robert C. Martin

Contents

Introduction

Clean Code

Meaningful Names

Functions

Comments

Formatting

Objects And Data Structures

Error Handling

Boundaries

Unit Tests

Classes

Systems

Emergence

Concurrency

Sucessive Refinement

JUnit Internals

Refactoring SerialDate

Smells and Heuristics

Appendix A: Concurrency II

Other Appendix

Introduction

“ How can we make sure we wind up behind the right door when
the going gets tough? The answer is: craftmanship.”

Introduction

Introduction

Why not to write bad code?

● Changes should be easy to make

● “ The ratio of time spent reading vs writting is well over 10:1”

● Others will work on our code! We will work on our code!

Code has to change!

● Our team looses productivity

● Changes can break other parts of the system

● Broken Window metaphor

It's hard to work on a mess!

Introduction

” Why does good code rot so
quickly into bad code?”

● We rush to deliver the software

● We think the work is done when the code does what it should

● We should defend the code

● We should know that

We are unprofessional!

“ The only way to make the deadline –
the only way to go fast – is to keep the
code as clean as possible at all times.”

What is
Clean Code?

What is Clean Code?

Bjarne Stroustrup
Inventor of C++

“ I like my code to be elegant and
efficient. The logic should be
straighforward to make it hard for
bugs to hide, the dependencies
minimal to ease maintenance, error
handling complete according to an
articulated strategy, and performance
close to optimal so as not to tempt
people to make the code messy with
unprincipled optimizations. Clean
code does one thing well. ”

What is Clean Code?

Grady Booch
Author of Object Oriented Analysis and

Design with Applications

“ Clean code is simple and direct.
Clean code reads like well-written
prose. Clean code never obscures the
designer's intent but rather is full of
crisp [clearly defined] abstractions and
straighforward lines of control.”

What is Clean Code?

Dave Thomas
Founder of OTI, godfather of

the Eclipse Strategy

“ Clean code can be read, and
enhanced by a developer other than
its original author. It has unit and
acceptance tests. It has meaningful
names. It provides one way rather
than many ways for doing one thing.
It has minimal dependencies, which
are explicitly defined, and provides a
clear and minimal API. Code should
be literate since depending on the
language, not all necessary informa-
tion can be expressed clearly in code
alone.”

What is Clean Code?

Michael Feathers
Author of Working Effectively

With Legacy Code

“ I could list all of the qualities that I
notice in clean code, but ther is one
overarching quality that leads to all of
them. Clean code always looks it
was written by someone who
cares. There is nothing obvious
that you can do to make it better.
All of those things were thought about
by the code's author, and if you try to
imagine improvements, you're led
back to where you are, sitting in
appreciation of the code someone left
for you – code left by someone who
cares deeply about the craft.”

What is Clean Code?

Ron Jeffries
Author of Extreme

Programming Installed

“ In recent years I begin, and nearly
end, with Beck's rules of simple code.
In priority order, simple code:
• Runs all tests
• Contains no duplication
• Expresses all the design ideas that
are in the system
• Minimizes the number of entities
such as classes, methods, functions,
and the like.”

What is Clean Code?

Ward Cunningham
Inventor of Wiki, Fit and coinventor of XP

”Godfather of all those who care about code”

You know you are working on clean
code when each routine you read
turns out to be pretty much what
you expected. You can call it
beatiful code when the codes also
makes it look like the language
was made for the problem.”

What is Clean Code?

Simple

Straightforward

Efficient

Expressive

Runs all tests

Literal

Turns out to be what
you expected

Minimal

Contains no
duplications

Full of meaning

Without obvious
improvements

Written by
someone who cares

Reads well

Meaningful
Names

Meaningful Names

● Code is basically names and reserved words

● ” Choosing good names takes time but saves more than it takes”

● Names should be expressive and should answer questions

Names are vital!

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

Many doubts arise...
1. What does this method get?

2. What kinds of things are in theList?

3. What is the importance of the zeroth position?

4. What is the significance of the value 4?

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

What about this code?

Meaningful Names

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Problem solved!

1. What does this method get? It gets all flagged cells!

2. What kinds of things are in theList? theList is a gameBoard filled with cells!

3. What is the importance of the zeroth position? That's the Status Value!

4. What is the significance of the value 4? It means it is flagged!

Meaningful Names

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Going further...

public List<Cell> getFlaggedCells() {
List<Cell> flaggedCells = new ArrayList<Cell>();
for (Cell cell : gameBoard)

if(cell.isFlagged())
flaggedCells.add(cell);

return flaggedCells;
}

This is pretty
much what you

expected!

Meaningful Names

● Use Readable names
● XYZControllerHandlingOfStrings != XYZControllerStorageOfStrings

● Use Searchable names

● Use the Language Standards

● Use Solution Domain names

● Use pattern and algorithm names, math terms, …

● Use Problem Domain names

● Don't confuse the reader

● Use the ” One Word Per Concept” rule

● Don't use jokes, mind mappings, hungarian notation, ...

Changes should be easy!
To make changes, we need

to undestand the code!

Meaningful Names

● “ Short names are generally better than longer ones, so long as they are clear”

● ” It is easy to say that names should reveal intent. What we want to impress

upon you is that we are serious about this.”

● If you find a bad name, change it!

Conclusion

Functions

Functions

● ” The first rule of functions is that they should be small. The second rule of

functions is that they should be smaller than that.”

● Functions should have few lines

● Each of them should be obvious and easy to understand

● Functions should not hold nested structures

● If, While, Else blocks should be straightforward (probably a function call)

● The conditional should probably be a function call that encapsulates it

Functions should be small!

Functions

● Functions that do one thing can't be divided into sections

● Two ways to identify whether a function does One Thing

● ” If a function does only those steps that are one level below the stated

name of the functions, then the functions is doing one thing.”

● If you can't extract another function from it with a name that is not

merely a restatement of its implementation, the it's doing one thing.

One Thing!
” Functions should do one thing. They should do it well. They should do it only.”

Meaningful Names

public void pay() {
for (Employee e : employees) {

if (e.isPayday()) {
Money pay = e.calculatePay();
e.deliverPay(pay);

}
}

}

Example

It does more than one thing...
1. It loops over all the employees

2. Checks to see whether each employee ought to be payed

3. Pays the employee

Meaningful Names

public void pay() {
for (Employee e : employees)

payIfNecessary(e);
}

private void payIfNecessary() {
if (e.isPayday())

calculateAndDeliverPay();
}

private void calculateAndDeliverPay() {
Money pay = e.calculatePay();
e.deliverPay(pay);

}

Refactored Example

It just iterates over
the employees

Checks whether an
employee ought to be paid

Pays the
employee

Functions

● Statements within a function should be all in the same level

● Mixing levels is confusing

● ” Once details are mixed with essencial concepts, more and more details

tend to accrete within the functions.”

● It's the first step towards the creation of big functions!

● The Stepdown Rule

● ” We want code to read like a top-down narrative” .

One level of Abstraction

Meaningful Names

public void pay() {
for (Employee e : employees)

payIfNecessary(e);
}

private void payIfNecessary() {
if (e.isPayday())

calculateAndDeliverPay();
}

private void calculateAndDeliverPay() {
Money pay = e.calculatePay();
e.deliverPay(pay);

}

The Stepdown Rule

To pay the employes, we iterate over all of them and pay the ones necessary
To pay an employee if necessary, we check if today is the payday and

calculate and deliver the pay if so.

Functions

● Functions should minimize the number of arguments

● Arguments are hard from a testing point of view

● Too many arguments = the function does more than one thing.

● Too many arguments = the function is used in many different ways.

● Don't use flag arguments

● It loudly proclaims that the functions is doing more than one thing

Function arguments

Functions

● Functions should not have side effects

● They usually create temporal coupling

● It should create a effect on the object or return something

● Don't Repeat Yourself (DRY)

● ” Duplication may be the root of all evil in software”

Last but not least

” Functions should be short, well named and nicely organized”

Comments

” Nothing can be quite so helpful as a well-placed comment. Nothing
can clutter up a module than frivolous dogmatic comments. Nothing
can be quite so damaging as an old crufty comment that propagates
lies and misinformation.”

Comments

● ” Comments are, at best, necessary evil”

● ” The proper use of comments is to compensate for our failure to express

ourself in code. Note that I used the word failure. I meant it.”

● They lie!

● Programmers can't realistically maintain them

● Comments don't always follow the code changes

● They require a maintainance effort that takes time

● ” Truth can only be found in one place: the code.”

The problem with comments

Comments

Code is the only truth

The GeneratePrimes example

Comments

● Legal Comments

● Informative Comments

● Commenting regular expressions can be quite useful

● Explanation of Intent and Clarifications

● Some decisions aren't implementation decisions

● We have to use libraries that aren't so expressive

● Amplification

● Explain how important an element is

● TODO Comments and Javadocs in Public API

Good Comments

Objects and
Data Structures

Objects and Data Structures

Objects vs Data Structures

public class Point {
public double x;
public double y;

}

public class Point {
double getX();
double getY();
void setCartesian(double x, double y);
double getR();
double getTheta();
void setPolar(double r, double theta);

}

Objects and Data Structures

Objects vs Data Structures

public class Point {
public double x;
public double y;

}

public class Point {
double getX();
double getY();
void setCartesian(double x, double y);
double getR();
double getTheta();
void setPolar(double r, double theta);

}

1. We don't know if internally
the point uses cartesian or polar
2. It enforces a access policy

1. We know that internally
the point uses cartesian coord.
2. It enforces no access policy
3. It would make no difference
if we added getters and setters

” Hiding implementation is not just a matter of putting a layer of functions
between the variables. Hiding implementation is about abstractions!”

Objects and Data Structures

Objects vs Data Structures

public class Square {
public Point topLeft;
public double side;

}

public class Circle {
public Point center;
public double radius;

}

public class Geometry {
public final double PI = 3.1415;

public double area (Object shape) {
if(shape instanceof Square) {

Square s = (Square) shape;
return s.side * s.side;

}

if(shape instanceof Circle) {
Circle c = (Circle) shape;
return PI * c.radius * c.radius;

}
Throw new NoSuchShapeException();

}
}

What if we wanted to add
a perimeter function?

What if we wanted to add
another shape?

New Geometry function! All Geometry functions change!

Objects and Data Structures

Objects vs Data Structures

public class Square implements Shape{
public Point topLeft;
public double side;

public double area() {
return side * side;

}
}

public class Circle implements Shape {
public final double PI = 3.1415;

public Point center;
public double radius;

public double area() {
return PI * radius * radius;

}
}

What if we wanted to add
a perimeter function?

What if we wanted to add
another shape?

 All classes change!

 Just add another class!

Objects and Data Structures

Objects vs Data Structures

● Makes it easy to add new functions without changing the data structures.

● Makes it hard to add new data structures because all functions must change

Using Data Structures

● Makes it easy to add new classes without changing existing functions

● Makes it hard to add new functions because all classes must change

Using Objects

We want flexibility!

Objects and Data Structures

The Law of Demeter
● A method f of class C should only call methods of these:

● C

● An object created by f

● An object passed as an argument to f

● An object held in an instance variable of C

● When you violate it, maybe you're giving the responsibility to the wrong class

● Train Wrecks
String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

TO
BufferedOutputStream bos = ctxt.createScratchFileStream(classFileName);

Error Handling

” Clean code is readable, but it must be robust. These are not
confliting goals. We can write robust clean code if we see error
handling as a separate concern (...)”

Error Handling

” Error handling is so important, but if it obscures logic, it's wrong”

● Use Exceptions Rather Than Return Code

● The caller code gets messy (business logic & error handling)

● It ” forces” the use of nested structures

public void sendShutDown() {
 DeviceHandle handle = getHandle(DEV1);
 if (handle != DeviceHandle.INVALID) {
 retrieveDeviceRecord(handle);
 if (record.getStatus() != DEVICE_SUSPENDED) {
 pauseDevice(handle);
 clearDeviceWorkQueue(handle);
 closeDevice(handle);
 } else {
 logger.log("Device suspended. Unable to shut down");
 }
 } else {
 logger.log("Invalid handle for: " + DEV1.toString());
 }
}

Error Handling

” Error handling is so important, but if it obscures logic, it's wrong”

● Use Exceptions Rather Than Null Return Values

● The caller code gets messy (business logic & error handling)

● It ” forces” the use of nested structures

public void registerItem(Item item) {
 if (item != null) {
 ItemRegistry registry = peristentStore.getItemRegistry();
 if (registry != null) {
 Item existing = registry.getItem(item.getID());
 if (existing.getBillingPeriod().hasRetailOwner()) {
 existing.register(item);
 }
 }
 }
}

 Don't Return Null!

Error Handling

” Error handling is so important, but if it obscures logic, it's wrong”

● The client should not know about all exceptions if not necessary

● Probable consequence: Duplication

...
try {
 port.open();
} catch (DeviceResponseException e) {
 reportPortError(e);
 logger.log("Device response exception", e);
} catch (ATM1212UnlockedException e) {
 reportPortError(e);
 logger.log("Unlock exception", e);
} catch (GMXError e) {
 reportPortError(e);
 logger.log("Device response exception");
}
...

Error Handling

” Error handling is so important, but if it obscures logic, it's wrong”

● The client should not know about all exceptions if not necessary

● Probable consequence: Duplication

LocalPort port = new LocalPort(12);
try {
 port.open();
} catch (PortDeviceFailure e) {
 reportError(e);
 logger.log(e.getMessage(), e);
}

public class LocalPort {
 private ACMEPort innerPort;
 public LocalPort(int portNumber) {
 innerPort = new ACMEPort(portNumber);
 }
 public void open() {
 try {
 innerPort.open();
 } catch (DeviceResponseException e) {
 throw new PortDeviceFailure(e);
 } catch (ATM1212UnlockedException e) {
 throw new PortDeviceFailure(e);
 } catch (GMXError e) {
 throw new PortDeviceFailure(e);
 }
}

Using an exception wrapper!

Error Handling

” Error handling is so important, but if it obscures logic, it's wrong”

● Define the Normal Flow

● We can't let error handling obscure the business logic

● We have to find clean normal flow

try {
 MealExpenses expenses =
expenseReportDAO.getMeals(employee.getID());
 m_total += expenses.getTotal();
} catch(MealExpensesNotFound e) {
 m_total += getMealPerDiem();
}

Error Handling

” Error handling is so important, but if it obscures logic, it's wrong”

● Define the Normal Flow

● We can't let error handling obscure the business logic

● We have to find clean normal flow

MealExpenses expenses = expenseReportDAO.getMeals(employee.getID());
m_total += expenses.getTotal();

public class PerDiemMealExpenses implements MealExpenses {
 public int getTotal() {
 // return the per diem default
 }
}

Using an Special Case Pattern

ExpenseReportDAO returns a Special Case class if MealExpensesNotFound

Classes

Classes

● ” The first rule of classes is that they should be small.

 The second rule of classes is that they should be smaller than that.”

● Single Responsibility Principle

● A class or a module should have one, and only one, responsibility

● Responsibility = Reason to Change Focused Changes

Classes should be small!

” We want our systems to be composed of many small classes, not a
few large ones. Each small class encapsulates a single responsibility.”

Classes

Cohesion

 Classes should have a small

number of instance variables

Each of the methods

should manipulate one or

more of those variables

+ = High Cohesion

Methods and Variables are
co-dependent and they
should stick together

=

Classes

Maintaining Cohesion results in many Small Classes

Some methods use some

variables, other methods

use other variables

Low Cohesion

They are not a logical
whole. Maybe they

shouldn't be together

The class probably violates the
Single Responsibility Principle

Extraction of a small class

Classes
How do we keep up with the Single Responsibility Principle?

● Small number of methods

● Method == Responsibility? No, but it gives a clue.

● The name of the class should describe its responsibilities.

● If can't find a concise name, we may have too many responsibilities

● Short Description

● We should be able to write a description of the class using 25 word

without ” if” , ” and” , ” or” or ” but” .

● High Cohesion

● It means methods and variables are co-dependent and should be together

● Low Coupling

● It means the class just know classes it should

Classes
Organizing for Change

● Open-Closed Principle

● Classes should be open for extension but closed for modification.

public class Sql {
 public Sql(String table, Column[] columns)
 public String create()
 public String insert(Object[] fields)
 public String selectAll()
 public String findByKey(String keyColumn, String keyValue)
 public String select(Column column, String pattern)
 public String select(Criteria criteria)
 public String preparedInsert()
 private String columnList(Column[] columns)
 private String valuesList(Object[] fields, final Column[] columns)
 private String selectWithCriteria(String criteria)
 private String placeholderList(Column[] columns)
}

It must change
when we add a new
type of statement

It has many
responsibilities!

It must change when we
alter the details of a single

statement type

Classes
Organizing for Change

● Open-Closed Principle

● Classes should be open for extension but closed for modification.

abstract public class Sql {
 public Sql(String table, Column[] columns)
 abstract public String generate();
}
public class CreateSql extends Sql {
 public CreateSql(String table, Column[] columns)
 @Override public String generate()
}
public class SelectSql extends Sql {
 public SelectSql(String table, Column[] columns)
 @Override public String generate()
}
public class InsertSql extends Sql {
 public InsertSql(String table, Column[] columns, Object[] fields)
 @Override public String generate()
 private String valuesList(Object[] fields, final Column[] columns)
}
...

To create new
functionality, we

subclass Sql

No existing class
must change

Emergence

” What if there were four simple rules that you could follow
that would help you create good design as you worked?”

Emergence

Getting Clean via Emergent Design

● Kent Beck's Simple Design is a design that:

1. Runs all the Tests

2. Contains no Duplication

3. Expresses the intent of the programmer

4. Minimizes the number of classes and methods

Emergence

Run all Tests

● A design must produce a system that acts as intented

● Systems that aren't testable aren't verifiable

” Making our systems testable pushes us toward a design where our

classes are small and single purpose.”

● It's easier to test classes that conform to the Single Responsibility Prin.

● It's easier to loose coupled classes

The most important rule!

Tests eliminate the fear that cleaning up the code will break it!
Expressive tests help us make changes, so they should be cleaned too!

Emergence

The Other Rules are
Refactoring consequences

● No Duplication

● Duplicações são o primeiro maior inimigo de um bom design

● Representa mais trabalho, risco e complexidade desnecessária

● Expressive
● ” spend a little time with each of your functions and classes. Choose

better names, split large functions into smaller functions, and generally
just take care of what you’ ve created. Care is a precious resource.”

● Minimal Classes and Methods

● Don't overdo things!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

