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Abstract

Computer systems for real-time multimedia processing require high processing power. Problems
that depend on high processing power are usually solved by using parallel or distributed computing
techniques; however, the combination of the difficulties of both real-time and parallel programming
has led the development of applications for real-time multimedia processing for general purpose
computer systems to be based on centralized and single-processor systems. In several systems for
multimedia processing, there is a need for low latency during the interaction with the user, which
reinforces the tendency towards single-processor development.

In this work, we implemented a mechanism for synchronous and distributed audio processing with
low latency on a local area network which makes the use of a low cost distributed system for this kind
of processing possible. The main goal is to allow the use of distributed systems for recording and
editing of musical material in home and small studios, bypassing the need for high-cost equipment.

The system we implemented is made of two parts: the first, generic, implemented as a middleware
for synchronous and distributed processing of continuous media with low latency; and the second,
based on the first, geared towards audio processing and compatible with legacy applications based
on the standard LADSPA interface. We expect that future research and applications that share the
needs of the system developed here make use of the middleware we developed, both for other kinds
of audio processing as well as for the processing of other media forms, such as video.

1 Introduction

In several computer systems for multimedia processing (such as interactive systems for the creation and
edition of multimedia, particularly audio and music, or systems for pattern recognition in continuous
media), it is highly desirable to be able to do the processing not only in real-time, but also with low
latency. Low latency processing means that the time it takes for a change in the input data of the
computer system to produce the corresponding output should be as small as possible; how small is
enough, given the usual goal that the latency must not be perceptible by the user, varies a lot with the
application and the user (see Section 2).

In interactive systems, for instance, low latency processing serves the purpose of giving the user
the illusion that the system performs the computations immediately, which is very important since the
user generally adjusts his input to the computer system according to the output he receives from the
system. Low latency may also be important if we want part of the data to be processed in real-time by
external devices (for instance, we may want to route a previously captured audio signal into an analog
effects processor and record the resulting sound without losing the timing information of the signal).

A simple example of a situation in which real-time low-latency processing is desirable is the recording
of an acoustic musical instrument with some effect processing (for instance, an electric guitar processed
by a custom digital distorter): while playing the instrument, the musician needs to hear the sound being
produced; if the processing latency is too large, the musician will have difficulties to perform correctly.

Systems for multimedia processing in real-time, including those where low latency is desirable, usu-
ally demand large processing power from the computer system. Problems that demand large computing

1



power (as multimedia does) are usually solved by parallel or distributed processing. However, the real-
time and low latency requirements of most multimedia processing systems coupled with the need for
sometimes strict synchronization between several media streams as well as the cost of multiprocessor
systems have made most multimedia applications to be developed for single processor systems.

In the audio and music processing field, it is not uncommon for such systems to be coupled with
dedicated, specialized hardware in order to boost the system performance. Such hardware, however,
is usually proprietary and expensive: for example, a single processing board for the Pro Tools HD
system costs 4 times as much as a complete mid-range desktop PC in the USA1. On smaller studios
without access to high-end equipment, it is relatively common for the computing power during audio
editing to be exceeded; when this happens, usually part of the processing is done in non-realtime mode
and the processed result is saved to disk, which is inconvenient, since the possibility of interactive
experimentation is lost.

Given the economic advantage and flexibility offered by general-purpose computer systems, being
able to process multimedia data in a distributed system would be useful, allowing users to go beyond
the performance limits of single processor systems in a more cost-effective way. Home and small music
recording studios, which usually cannot afford the expensive proprietary solutions, would benefit from
the use of small clusters of older and inexpensive computers to increase their processing power at a low
cost.

In this work, we developed a mechanism for distributed audio processing on a LAN with low latency
which is compatible with legacy applications in the Linux environment using general purpose, low cost
hardware equipment. Linux was chosen for several reasons beyond its (many) technical merits, such as
(Kon, 2001; Raymond, 2001; Silveira and Cassino, 2003):

• its low cost;

• the full availability of the source code for both the operating system kernel and the applications
that run on top of it;

• the community involvement in the development of the system;

• the social benefit that free software can bring about as part of a strategy for digital inclusion of
the poorer population;

The system is based on two layers: the first, generic, is geared towards transparent real-time, low latency
data routing between machines on a LAN; the second, specific, deals with the communication with
legacy audio applications by means of the LADSPA specification to make use of distributed processing.
The generic layer was developed as a reusable middleware (Tanenbaum and Steen, 2002, p. 36–42)
for distributed processing of periodic tasks for continuous media in real time with low latency. The
experiments showed excellent results with latencies of less than 7ms, and other hardware configurations
should allow latencies much lower still.

2 Low latency

The time a system takes to respond to a stimulus (or to offer some output that is based on some
input) is called latency ; variations in latency during processing is called jitter. Several systems, such
as those that implement pattern recognition in continuous media (for instance, a system to control the

1Prices consulted at <http://www.gateway.com> and <http://www.protools.com> in April, 2004.
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movements of a robot by means of computer vision) or such as multimedia interactive systems, must
be able to do their processing not only in real-time, but also with low latency and with low jitter.

In non-interactive systems, the desirable characteristics of a system regarding latency and jitter
usually can be defined with reasonable precision according to the system domain. For instance, the
maximum possible speed of a moving robot in a known environment determines the maximum latency
for the system to promote a route change in order to avoid collision. Still, this system might still be
flexible: for instance, the robot may slow down if processing exceptionally takes longer than expected2.

In interactive systems, adequate latency and jitter characteristics are determined by the interaction
with the user (Shneiderman, 1984): high latency or jitter may impair the user’s performance or, at
least, offer a frustrating and tiring experience (Barber and Lucas, Jr., 1983). For instance, the user of
a system with a GUI will have difficulties to use it if the on-screen mouse pointer reacts with a long
or varying delay to the mouse movements. In a similar way, if the system takes too long to react to
mouse clicks, the user may click more than once. So, in order to assess the quality of an interactive
system regarding its latency and jitter characteristics, we need to understand their effects on the user’s
perception so that we can define maximum acceptable values for these parameters on such system.

The acceptable limits for latency and jitter on an interactive system may vary a lot (Miller, 1968).
On the above example, the latency of the system with regard to the mouse movements should be very
small; the latency for the system to offer visual feedback to the user for a mouse click may be longer;
and the latency for the end of the processing started by the mouse click may be even longer. Interactive
multimedia applications usually require the lowest latency and jitter values, since they usually involve
at least one continuous media that may be modified by the user’s interaction. But even in multimedia
systems there are differences on the acceptable limits for latency and jitter: human hearing has a higher
time precision than vision (Repp, 2003), and the time precision involving different stimuli types (such
as visual and auditory or auditory and tactile) is usually lower than temporal precision with stimuli of
the same kind (Levitin et al., 1999).

The higher timing precision of hearing and its relevance to music make the control of latency and
jitter a very important part of the design of several systems for computer music. In many cases, systems
are developed aiming at producing the lowest latency and jitter possible, which current cost-effective
technologies put around a few miliseconds. However, many applications, especially those dealing with
wide area network delays, cannot typically offer latencies under 10ms, and may be limited to much
higher latencies; still, they are obviously very interesting and are, therefore, developed in spite of the
supposedly suboptimal latency and jitter characteristics they are able to offer.

While latency and jitter have been discussed a lot and much is already known about how we
perceive them, we still lack experimental research that enables us to understand better the various
tradeoffs between latency, jitter, human performance, and perception. For instance, it would be hard
to argue that “pop” music requires more strict synchronization between performers than slow-moving
textural music; but what are the acceptable limits for latency and jitter in each scenario? And, more
importantly, what about other scenarios? When are latency and jitter perceivable? When are they
influential on the performance of a musical instrument? When do they degrade the user experience?
When do they seriously impair different kinds of human performance?

In this section, we try to show that there are a lot of aspects in human perception regarding latency
and jitter that go beyond the usual “less is better” approach; that the naı̈ve “perceptible is bad, not
perceptible is good” approach to the problem may be inadequate in some circumstances; and suggest
an experiment that could be carried out to help shed some light on the subject.

2In fact, that is exactly what a human does when driving a car: if we take a long time to identify the distance and
speed of an object ahead of us, we slow down.
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2.1 Effects of latency and jitter

Since we are able to use timing deviations as low as 20µs between ears as cues to determine spatial
positioning (Pierce, 1999, p. 102), variations in the typical 44.1KHz sampling frequency may affect our
spatial perception. However, since this kind of jitter comes from hardware imprecisions, there is not
much that can be done about it but to improve the hardware precision and maybe increase the audio
sampling rate. Besides that, this kind of jitter is not directly related in any way to the interactive
aspect of a system, and therefore will not be further discussed here.

Timing may also affect the perception of timbre, such as in comb filtering or in tight drumming
flams (Wessel and Wright, 2002). Comb filtering effects occur in situations in which an original sound
is mixed with a corresponding delayed sound and both sounds are reasonably similar (for instance,
the sound of an ordinary acoustical instrument and the same sound processed in order to increase its
high frequencies). In most practical situations, however, comb filtering effects do not appear or may be
avoided: often, the processed sound is used as a replacement for the original, eliminating the source for
the effect. In other cases, it is possible to delay the original sound to eliminate the temporal difference
between the original and the processed signals. Probably the only situation where comb filtering cannot
be avoided is that in which a real-time acoustical signal is both received directly by the listener (such as
what happens with acoustical instruments) and processed and reproduced by electronic means. In this
case, however, the effect is similar to what occurs naturally in several acoustic ambients (D’Antonio,
s.d.). Thanks to the difference in the spatial positioning of the acoustic sources3, the the comb filtering
effect varies according to the listener’s position and is most significant during the sound attack, before
the reverberation and other acoustic effects minimize it. This similarity with what occurs in ordinary
acoustical ambients suggests that we may ignore the effect in this kind of scenario; in fact, there is not
much that can be done about such effect of latency, since almost any reasonable latency value, high or
low, will result in comb filtering in these situations.

Also, the timbre of flams may be altered by timing differences as low as 1ms; evidently, comb
filtering plays a rôle in this case too, but here it is supposedly under the control of the interpreter.
Therefore, a digital system must be able to control event onsets with jitter levels below 1ms if such
events are to be reproduced faithfully. As we will see later, jitter values close to this are relevant in
other scenarios as well, which suggests that trying to achieve low levels of jitter (perhaps by trading it
for added latency) is usually a good strategy.

Outside of these extreme examples, the problem with latency and jitter is usually a problem of
perceived synchronization: they may prevent us from perceiving events that should appear to be si-
multaneous as such. This, in turn, may affect our interaction with the system. We may divide pairs
of events that may have to be perceived as simultaneous in a musical system in three categories: an
external and an internal isochronous beat (that is, the relation of a beat-based musical structure and
the corresponding induced beat on the user), pairs of external events (such as pairs of notes or flash
lights and note onsets), and actions of the user and their effects (for instance, what happens while
playing a musical instrument)4.

3In the case of the effect caused by the ambient acoustical characteristics, each sound reflections act as a secondary
audio source.

4A special case of synchronization between an internal and an external beat exists when the external beat adjusts to the
user’s internal beat. A simple example is the rhythm synchronization between music performers, where the internal beat
of all performers must be synchonized and, for each performer, the other performer’s beat is external. There is already
some work on this area (Schuett, 2002), but the results were somewhat inconsistent; we will not address this subject here,
but additional work must be done on this topic.
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2.1.1 Synchronization in rhythm

One important characteristic of human perception is rhythm, and rhythm is obviously very important
in several applications involving music. This is an area where human performance and perception show
extremely high precision, although not always in a conscious manner. It was shown that we can tap a
steady beat with typical variations in intertap intervals as low as 4ms (Rubine and McAvinney, 1990).
Similarly, we can also adjust our tapping to compensate for variations of around 4ms in interstimuli
intervals in an otherwise isochronous pulse sequence (Repp, 2000) and detect consciously timing vari-
ations of around 6ms (Friberg and Sundberg, 1995). If such variations are cyclic and a little higher,
close to 10ms, we even spontaneously perform together with them (and not only correct our tapping
after each variation is detected) (Thaut, Tian and Azimi-Sadjadi, 1998). This kind of adjustment,
however, is done subconsciously. Still, it is not unlikely that such variations are perceived not as timing
variations, but as some kind of fuzzy musical characteristic like the so-called “feel”. In fact, there are
strong indications that performers do introduce such variations in performances according to musical
context (Bilmes, 1993).

Experimentation suggests that this rhythmic perception is based on the comparison between the
expected and actual time for each sound attack (Schulze, 1978); this hypothesis is reinforced by the fact
that such precision in tracking rhythmic variations is not significantly affected if we tap out of phase
(that is, on the “upbeat”) (Repp, 2001). This in turn means that the perception of rhythmic variations
of around 10–20ms is not based on auditory cues related to the slight differences in attack moments of
close sounds. Instead, such high precision regarding rhythm means we are able to assess time intervals
and attack times with around 4ms of precision in a subconscious level, and that discrepancies of this
magnitude may affect the feel of some kinds of music (those that are based on a very steady isochronous
pulse, like many forms of “pop” music). This makes a strong point for the case of trying to minimize
jitter as much as possible in a computer music system if such kinds of music are to be supported.

2.1.2 Synchronization in external events

It would be tempting to conclude that such precision in perception means we need to guarantee that
events that should be perceived as simultaneous should indeed happen with no more than around 4ms
of asynchrony between them. However, asynchronies of up to around 50ms in supposedly simultaneous
notes are not at all uncommon during ordinary music performance. In fact, the percussion and horn
sections of an orchestra may be over 10m farther from the audience than the violin section, which results
in asynchronies around 30ms for the public beyond the ordinary asynchronies between instruments.
Even in chamber music, asynchronies of up to 50ms are common (Rasch, 1979). In a similar way,
dynamic differences between voices on pieces for the piano are responsible for what has been called
melody lead : notes of the melody are tipically played around 30ms before other supposedly simultaneous
notes5. In spite of the percussive characteristic of the piano sound (which results in short attack times
and, therefore, very distinguishable attacks), these asynchronies are not perceived as such by performers
or the audience. Finally, subjects asked to tap along with a metronomic stimulus virtually always
tap about 10–80ms ahead of time (typically 30ms) without noticing it (Aschersleben, 2002). These
facts suggest that latencies responsible for asynchronies in external events of up to at least 30ms may
be considered normal and acceptable under most circumstances; music performance with traditional

5There has been some debate as to wether such effect is only a reflection of the dynamic differences between voices or
if it is subconsciously introduced by the performer in order to highlight the melody line. Recent research (Goebl, 2001),
however, leaves very little doubt that this effect is indeed a consequence of the dynamics; the perceptual effect of the
melody lead effect also appears to be minor (Goebl and Parncutt et al., 2003).
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instruments is not impaired by them. In fact, such asynchronies are used by the ear as strong cues for
the identification of simultaneous tones (Rasch, 1978).

It may be argued that, even if such asynchronies are not consciously perceptible, they may have a
musical role and be partly under the control of the performer; in fact, as just mentioned, they are at least
responsible for better tone discrimination. Apparently, though, if such musical role exists, it is minor:
not only perceptual experiments showed little impact of variations in artificially-induced asynchronies
(Goebl and Parncutt et al., 2003), but also performers apparently do not have such high precision in
controlling note asynchronies. This stems from the influence of tactile and kinesthetic (usually called
haptic) sensations that accompany the action.

2.1.3 Synchronization in haptics

This brings us to the most interesting aspect of latency and jitter for multimedia and music applications:
the perception of the latency between an user action and the corresponding reaction. In this respect, our
perception once again shows a very high degree of precision: it was shown that variations in feedback
delay of 20ms are, although not consciously noticed, compensated for in the same manner as we can
adjust tapping to a slightly disturbed beat sequence (Wing, 1977). It is reasonable to expect similar
mechanisms to be involved in both cases; in fact, it is most likely the same mechanism that is involved:
subjects create an expectation for the moment in time for the feedback, detect the feedback disturbance
and try to compensate for it.

In spite of the similarity, in such situation there are three elements at stake that make matters more
complex: the user’s motor commands, the user’s corresponding haptic sensations, and their relation to
the external feedback. These elements are important because there is very strong evidence suggesting
that the moment we recognize as the moment of start of external feedback can be widely influenced by
several factors, including the haptic sensations (which are themselves a form of feedback) (Aschersleben,
2002). This means that events that actually happen simultaneously may be perceived as asynchronous,
even if only at a subconscious level.

As mentioned before, subjects typically tap together with a metronomic stimulus ahead of time.
The amount of anticipation, however, is dependent on the characteristics of both auditory and haptic
feedback. Auditory-only feedback produces perfect synchronization; haptic-only feedback produces
reasonably large anticipations; both forms of feedback together produce relatively small anticipations;
and finally, normal haptic feedback combined with delayed auditory feedback produce anticipations
that grow in accordance with the amount of delay (Stenneken et al., 2003; Aschersleben and Prinz,
1997; Mates and Aschersleben, 2000). Excluding the very special cases of auditory-only feedback, such
measured variations were of about 15ms for auditory feedback delays between zero and a little less than
30ms for subjects that proved to show very little variability due to previous training. Anticipations also
tend to decrease in contexts where there is sound data in between beats. Such variations give further
indication that, while asynchronies in note onsets are used as cues to tone discrimination, their role in
musical expression is probably very limited.

The most important aspect of this is the fact that we can subconsciously adjust our performance to
compensate for such different feedback conditions. During experiments with delayed feedback, subjects
clearly altered their behavior according to the characteristics of each trial, forcing the researchers to
introduce control trials between each pair of trials (Aschersleben and Prinz, 1997; Mates and Ascher-
sleben, 2000). In piano performance, the time elapsed between pressing a key and the corresponding
note onset is around 100ms for piano notes and around 30ms for staccato, forte notes (Askenfelt and
Jansson, 1990). Even if we assume that the pianist expects the note onset to happen somewhere in the
middle of the course of the key, it is very likely that latencies will be different for different dynamic
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levels. Still, pianists have no problem dealing with such different latencies; since voices in pieces for
the piano usually have dynamics that change continuously, the performer has the opportunity to adjust
himself to the corresponding changes in latency. When there are abrupt changes in dynamics, they
usually are related to some structural aspect of the music, which brings with it large interpretative
timing variations. Finally, modern music may make use of dynamic changes that do not fit well with
interpretative timing variations; however, such music is usually not based on a clear and steady beat,
making the effects of sudden variations in latency much less perceptible.

In fact, since our motor system cannot react instantaneously, we must issue motor commands ahead
of time in order to perform“on time”; it is not hard to believe that the various feedbacks for our actions
are used to calibrate how much ahead of time commands are issued. In tapping experiments, latencies
of up to around 30ms were adjusted for, resulting in final asynchronies between stimulus and response
variations of about 10ms (Mates and Aschersleben, 2000), which, as previously stated, we believe are
mostly irrelevant.

2.2 The future

We hope we have been able to argue convincingly that somewhat large latencies, maybe up to 20–30ms,
are pretty much acceptable for most multimedia and music applications. Jitter, on the other hand, can
be a bigger problem; but it is generally possible to trade jitter for added latency. This does not mean
lower latencies are not of interest; quite on the contrary, since latency in different parts of a system
accumulates. For instance, the mere positioning of loudspeakers at around 3–4m of distance from a user
adds 10ms to the total perceived latency of the system; many DSP algorithms add significant latency;
etc. Therefore, aiming at the lowest possible latency in each part of a system helps keep the overall
latency under control. Still, tradeoffs are acceptable.

Currently available data is still insufficient to determine clearer limits for latency and jitter as well
as to confirm much of what was said here in a musical context, making it difficult to assess the quality
of musical and multimedia applications regarding temporal precision. This is so because much of the
current research on music and timing perception makes use of non-musical stimuli. Since timing is so
tightly tied to still unmeasurable aspects of music such as “feel” and since at least part of our timing
perception occurs outside of consciousness, we need more experiments performed on actual music. Such
experiments would face many technical challenges, some new, some of which have already been dealt
with before (Bilmes, 1993; Levitin et al., 1999).

As an example, one such experiment would be, on a small ensemble, to subject one of the instru-
mentists to different feedback latencies to assess their effect over the perfomer. This should be repeated
with feedbacks provided by earphones, loudspeakers, with and without artificial reverberation. Also,
different kinds of music (such as tonal classical music and percussion-rich “pop” music) might have
different impacts. Finally, running such tests in different rooms would be useful, since the acoustical
ambience may affect the performer.

3 Callback functions

The usual read/write mechanism offered by general purpose computers and operating systems for I/O
is not adequate for low latency processing. This mechanism depends on buffering at the operating
system level, and such buffering increases the processing latency of the system by a significant amount.

In the audio processing field, this situation has been solved, under Windows and MacOS, by the
ASIO specification [ASIO] and, under Linux, by the JACK system [JACK]. Both define mechanisms
in which, conceptually, a user space application can register a function (residing inside its address
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space) that is responsible for handling the I/O data. When an audio interrupt is generated by the
audio hardware, the kernel interrupt handler writes and reads the data to and from buffers inside
the application’s address space and calls the user space function that was registered to produce and
consume data before the next interrupt. In this way, the application can process input data as soon as
it arrives and can output processed data as soon as it is ready, communicating with low latency with
the hardware device without the need to have device-specific code inside itself. This method of using
callback functions for low latency I/O operations can be seen as a transposition of the kernel space
interrupt handler to the user space application, which allows for easy changing of the kind of processing
that is to be carried on at each interrupt without the need for making any changes to the operating
system kernel.

A very important point is that, in order to guarantee low latency operation, the application must
not block in any way during the callback function; if it did, the operating system might schedule another
process to run during the short period of time between each interrupt and the application would hardly
be re-scheduled in time to complete the processing before the next interrupt.

3.1 Callback-based plugin systems

Many algorithms for multimedia processing are commonly used; it’s the way by which they are combined
with captured data and with each other that creates new material. Therefore, in a multimedia editing or
processing application, each one of several available algorithms should be easily activated, deactivated,
combined with others and applied to different data streams; also, new algorithms should be easily
incorporated into the system. The most common solution to these needs is to implement each algorithm
as an independent software module (usually called a plugin) that is loaded by a generic application that
deals with the modules without knowing anything about the internals of the module, following the more
general tendency towards component-based software development.

As we just saw, in order to perform the I/O data processing with low latency, the application must
register a callback function with the system that performs all the necessary computations. If, however,
most of the processing is to be done by independent software modules managed by the application,
these modules must be compatible with the operation inside a callback function and must, if possible,
avoid the memory allocation needed by pass-by-value function calls; that is, they must accept pointers
to data buffers that need to be processed, just as the main callback function does.

In the audio processing field, two specifications for the development of plugins that follow this
design have gained widespread use: the VST specification [VST] under Windows and MacOS and the
LADSPA specification [LADSPA] under Linux. Any application compatible with either specification
can make use of any plugin available under that specification without the need to know anything about
the internals of the module and still be able to work with low latency.

4 Distributed real-time systems

When designing a method for distributed processing of multimedia in real-time with low latency, one
must take into account several factors. The specific characteristics of multimedia with regard to real-
time and low latency, which suggest the use of specialized real-time operating systems (such as RT-Linux
– Barabanov and Yodaiken, 1996), must be balanced with the needs for advanced user interfaces and
wide hardware support, which suggest the use of general-purpose operating systems. The method by
which the processing is to be distributed must be addressed, and the limitations of the networking
system must be taken into account.
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4.1 Distributed processing

We are interested in the distribution of multimedia processing across a collection of computers in a
network. There are several opportunities for this distribution:

• Development of new DSP algorithms capable of running concurrently;

• Parallel processing of different data streams (by allocating different streams to different machines);

• Parallel processing trough pipelining (the available machines are“chained”and each one processes,
at time t, the data that was processed by the preceding machine at time t− 1. The problem with
this approach is that it results in an increase in the latency of the processing proportional to the
number of machines in the pipeline. The maximum length of the pipeline must, therefore, be
computed carefully).

In order to appraise these possibilities, we should note that multimedia processing, and specially music
processing, is made of the combination of:

• multiple different processing algorithms applied to a single data stream (for example, an electric
guitar may be subjected to compression, distortion, flanging, EQ and reverberation);

• multiple processed data streams grouped together (for example, 32 audio channels recorded by
32 microphones on a stage).

Developing parallel algorithms for multimedia processing could be interesting, but this solution is based
on the creation of entirely new algorithms, aiming at achieving the same functionality already available
with non-parallel ones. While there are computationally-intensive data transformations for multimedia
that are particularly slow (to the point of not being able to be run in real-time) which could benefit
from this approach, the vast majority of them (reverbs, distorters, compressors etc.) are relatively
lightweight; it is the sum of several of them to process an entire multimedia composition that can
exceed the computer’s capacity.

It seems, therefore, more interesting to base distributed systems for multimedia applications either
on pipelining, where data is processed in sequence by several machines, or on the parallel processing
of the streams, where each data stream is assigned to a CPU that performs the whole processing of
the stream. Since pipelining increases the latency of the system, our approach is based on the parallel
processing of different streams. It should be noted, however, that it would not be difficult to transpose
this discussion (and its implementation) to pipelining and even to a combination of both.

4.2 Real-time systems

Real-time systems are traditionally categorized as hard real-time systems or soft real-time systems.
Multimedia applications are often used as examples of soft real-time systems. The definitions of soft and
hard real-time systems, however, vary in the literature (Liu, 2000, p. 27–29). Hard real-time systems
are usually defined in such a way as to make it clear that a timing failure is absolutely unacceptable in
such systems (it might threaten human life, for instance). On the other hand, the definitions for soft
real-time systems have very different meanings: they may be characterized as systems where timing
failures are undesirable but tolerable, or by the ability to adapt to timing failures (for instance, a
video playback application may skip or duplicate frames during execution if deadlines are missed6), etc.

6Several research projects and commercial products have addressed this problem, particularly in distributed systems;
c.f., for instance, Chen et al. (1995); Vieira (1999).
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Besides that, there are lots of aspects that define a real-time system; the terms “soft real-time” and
“hard real-time”, therefore, are not enough to characterize a real-time system. Nonetheless, hard and
soft real-time systems have historically been associated to distinct fields of applications.

However, while some multimedia applications (such as video players) are easily characterized as
soft real-time, some others (such as interactive multimedia editing and processing tools) are not: they
cannot adapt to timing failures (since that would cause audio glitches, skipped video frames etc. which
might be acceptable in other environments, but are not in a professional editing tool) and, therefore,
need timing precision as close as possible to that of hard real-time systems. On the other hand, sporadic
failures are not catastrophic, which means that statistical guarantees of timing are enough for such a
system to be acceptable7.

Since it is not possible to deal with timing errors graciously, these systems do not need to implement
sophisticated mechanisms for error correction and adaptation as most soft real-time systems do; all they
need is to detect errors, which may be treated as ordinary errors by the system. During the recording
of a live musical event, for instance, a failure may be registered for later editing. Reducing the quality
of the recording, on the other hand, is not acceptable. During the actual editing work, a failure may
simply stop the processing and present an error message to the user, who can restart the operation.
Neither one of these options can be characterized as “adaptation”: the failures are, in fact, treated as
processing errors, not as conditions to which the system can adapt.

Finally, such systems are ideally based on general purpose computers and operating systems, because
they offer low cost, advanced user interfaces, and a rich set of services from the operating system. The
use of general purpose operating systems also guarantees the compatibility of the application with a
much wider range of general purpose multimedia hardware equipment, since these systems usually offer
software drivers for such hardware, differently from operating systems designed specifically for real-time.

Researchers have classified systems with such“hybrid”needs as firm real-time systems (Srinivasan et
al., 1998). Such systems are characterized by being based on general-purpose computers and operating
systems, having statistically reliable timing precision, and treating timing errors as hard errors with no
need for adaptation. Thanks to the increasing number of firm real-time applications, general purpose
operating systems such as Linux and MacOS X have been greatly enhanced to offer good performance
for this kind of application. With the proper combination of hardware and software, Linux, Windows,
and MacOS are capable of offering latency behaviour suitable for multimedia: from 3 to 6 milliseconds
(MacMillan, Droettboom and Fujinaga, 2001).

4.3 Network limitations

Since the hardware interrupts generated by the multimedia hardware are responsible for driving the
timing of the complete system, the machine that treats these interrupt requests in a distributed system
must have a special role8. In order to process real-time multimedia data remotely, an application
running on this machine must

1. receive the sampled data from the multimedia device after a hardware interrupt request,

7In the case of interactive editing tools, the functionality of the application is not harmed much if eventual timing
errors occur, say, once every half hour. If the user starts such real-time application and it runs correctly for some seconds,
it is likely that it will work correctly for longer periods. Even such empirical evidence of “timing correctness” may be
acceptable to the user in this case.

8It is possible to have different machines perform I/O synchronously using hardware capable of operating with “word
clock”, which is a hardware mechanism to synchronize multiple sound cards. This, however, relies on additional hardware
on each node and, at the same time, alleviates the need to use the network for the purposes described here, since each
machine is able to completely process incoming and outgoing streams of data independently. Therefore, this approach is
a special case, which is out of the scope of this paper.
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2. send it out through the network,

3. have the data remotely processed,

4. get it back from the remote machine, and

5. output it to the multimedia device before the next interrupt (Figure 1).

Figure 1: At each interrupt In, captured data (Dn) is sent out to the remote ma-
chine, processed (Pn), returned (Rn) to the originating machine already
processed (D′

n
), and output to the multimedia device before the next in-

terrupt (In+1).

This mode of operation, however, uses the network in half-duplex mode, and uses both the network
and the remote CPU for only a fraction of the time between interrupts. Given current commodity
networking technologies (namely, Fast Ethernet), it is not hard to notice that such setup would offer
the possibility of very little remote processing to be performed. If we are to seek better resource
utilization, we should observe that we may distinguish three phases on the remote processing of data
(for simplicity, only two machines will be considered):

1. the data transfer from the originating machine to the remote machine;

2. the remote data processing;

3. the data transfer from the remote machine back to the initial machine.

We can benefit from a mechanism similar to the sliding windows technique used in several networking
protocols (for instance, the use of sliding windows in the TCP/IP network protocol is described in
Stevens, 1994, p. 280–284) to achieve better performance in a distributed application: at each callback
function call (usually brought up by a hardware interrupt), the captured data is sent to the remote
machine and the data that was sent out on the previous iteration and remotely processed is received.
That is, the output data is reproduced one period “later” than it would have been normally, but this
permits data to be sent, processed, and received back in up to two periods instead of just one (Figure
2 – a). If the amount of data is so large that two periods is not enough time to send, process, and
receive the data, we may extend this method to make the delay correspond to two periods instead of
one, which allows us to use three periods to perform these operations (Figure 2 – b). This is optimal
in the sense that it allows us to use the full network bandwidth in full duplex and also to utilize all
the processing power of the remote machine, but has the cost of added latency. These two modes of
operation use the sliding windows idea with windows of size one and two respectively9.

9We should note that we cannot extend this idea to window sizes larger than two because each one of the sending,
processing, and receiving data phases cannot take longer than one period each. If any of them did, it wouldn’t have
finished its task when new data to be dealt with was made available on the next period.
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(a) window size 1

(b) window size 2

Figure 2: At each interrupt In, captured data (Dn) is sent out to the remote machine
to be processed (Pn); remotely processed data from a previous iteration
(D′

n−1or D′

n−2) is returned (Rn−1or Rn−2) and output to the multimedia
device before the next interrupt (In+1).

5 A middleware system for distributed real-time, low-latency pro-

cessing

The data communication between applications on a network may involve many different kinds of data;
industry standards such as CORBA (Henning and Vinoski, 2001; Siegel, 2000) promote a high level of
abstraction for this kind of communication, allowing for virtually any kind of data to be sent and re-
ceived transparently over networks of heterogeneous computers. However, mechanisms such as CORBA
introduce an overhead that may hinder low latency communication. In order to achieve better real-time
and low latency performance, we developed, in C++ under Linux, a simple middleware system (approx-
imately 2000 lines of code) geared towards distributed multimedia processing taking into consideration
the aspects discussed above.

This middleware does not intend to compete with systems like CORBA in terms of features, abstrac-
tion level, or flexibility; on the contrary, the intent is only to establish a simple and efficient method for
the transmission of synchronous data in real-time with low latency in a local network. For this reason,
it deals only with preallocated data buffers, not with data organized in an object-oriented way; and,
for the same reason, it deals only with buffers of data types native to the C programming language:
integers, floats, doubles, and characters.

Coupled with systems like CORBA, however, the present middleware may offer a blend of the most
interesting characteristics of such systems, such as flexibility, transparency etc. with good performance
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on applications with real-time and low latency needs. Our real-time communication mechanism can
be used by CORBA objects to achieve low latency communication. The development of distributed
applications with real-time and low latency needs can, therefore, use CORBA for its non-real-time
aspects and the middleware described here for its real-time aspects.

5.1 Implementation

For each data stream that is to be processed remotely, the central machine creates an instance of the
Master class. Objects of this class maintain a pair of UDP “connections” with the remote machine
that is responsible for the processing of that stream, one to send and the other to receive the data10.
Instances of this class have an attribute of type DataBlockSet, which is an (initially empty) collection
of instances of the DataBlock class. As can be seen in Figure 3, every time the application needs to
register a new buffer of data to be remotely processed, it asks Master for the creation of a new DataBlock;
Master delegates this operation to the DataBlockSet. After receiving the reference to the DataBlock, the
application can register a pointer to a memory buffer and its size in this DataBlock, as well as define
if this buffer must be only read (sent to the remote machine), written to (received from the remote
machine) or both. At each iteration, the application then only has to call the process() method of
the Master object to have the data processed; this method sends and receives the data buffers that are
contained in the DataBlocks that are part of the DataBlockSet, taking care not to block when reading
from the network, but to use busy-wait instead if needed. Data types sensible to the byte ordering have
their bytes rearranged (if necessary) by the DataBlock object that contains them after they are received
by either side of the communication link.

Figure 3: Interaction between the client and the Master/Slave classes for the defini-
tion of a new buffer that is to be sent/received through the network.

On the remote machine, an object of the Slave class keeps corresponding UDP “connections” with
the central machine and a DataBlockSet with DataBlocks corresponding to the DataBlocks created on
the central machine. This class also keeps a reference to a callback function, defined by the application,
that is called every time a new block of data is received from the network; at the end of the processing,
the resulting data is sent back to the central machine (Figure 4). Differently from the Master class, Slave

10While the current implementation uses UDP for communication, the connections between the machines are handled
by independent classes, which may be substituted in order to support other network protocols. In fact, UDP does not have
real connections: in this implementation, the connections exist only on a conceptual level. Also, all data to be sent/received
is encapsulated in a single UDP datagram, which limits the size of the data to be transferred at each iteration to around
60KBytes, which is the maximum size of a UDP datagram.
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blocks when reading from the network: the availability of network data is the result of the interrupt
generated on the central machine, which triggers the operation on the other machines.

Figure 4: Interaction between the classes for the data exchange between machines.

When created, objects of the Master class define the window size that should be used for the
connection. Besides the data buffers allocated by the application, Master also sends and receives a
counter, used to detect errors on the ordering of the data received by Master.

6 An application: Distributed LADSPA

In order to process the data with the least possible latency, we need to do all the processing inside
the callback function. On the other hand, we want to be able to perform several different kinds of
processing inside the callback function: in a multimedia editing or processing application, each one of
several available processing algorithms should be easily activated, deactivated, combined with others,
and applied to different data streams. Also, new algorithms should be incorporated into the system
easily.

The most common solution to these requirements is to implement each processing algorithm as
an independent software module (usually called a plugin) that is loaded by a generic application that
deals with the modules without knowing anything about its internals, following the tendency towards
component-based development. These modules must be compatible with the operation inside a callback
function and must, if possible, avoid the memory allocation needed by pass-by-value function calls; that
is, they must process data buffers previously allocated, just as the main callback function does.

In the audio processing field, two specifications for the development of plugins that follow this
design have gained widespread use: the VST specification [VST] under Windows and MacOS and the
LADSPA specification [LADSPA] under Linux. Any application compatible with either specification
can make use of any plugin available under that specification without the need to know anything about
the internals of the module and still be able to work with low latency.
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In order to make the distributed processing of audio easier for a larger audience of free software
users, as well as to stimulate the use of free software in music applications, we decided to implement
a mechanism for distributed audio processing compatible with the LADSPA specification, presenting
the system to any audio application as an ordinary LADSPA plugin; this way, applications designed
to make use of LADSPA plugins are able to use the system unmodified. At the same time, our
middleware supports distribution of all the algorithms already available as LADSPA plugins (such as
flangers, reverbs, synthesizers, pitch scalers, noise gates etc.), simply by delegating the processing to
them. The current version of this implementation is available for download under the LGPL license at
〈http://gsd.ime.usp.br/software/DistributedAudio〉.

The layer responsible for the interaction with the application is simply an application of the Adapter
design pattern (Gamma et al., 1994): it presents itself to the application with the interface of a LADSPA
plugin but, on the inside, creates a Master object responsible for passing the data to be processed to
a remote machine. On the remote machine, the application creates data buffers in which the received
data is written; a Slave object receives the data and invokes the callback function that the application
registered, which just calls the appropriate function of the real LADSPA plugin. A mechanism for the
dynamic creation of “meta-plugins”, i.e., LADSPA plugins that are actually compositions of several
other LADSPA plugins, is in the works.

Several aspects of our system need to be configured without a need for low latency processing, such
as selecting which machine is to perform which processing on which data stream, defining the window
size to use etc. For these, another layer, based on CORBA, allows the easy creation and destruction of
data processing chains, definition of network connections etc. Machines capable of operating as “slaves”
are able to register themselves in a CORBA trader to facilitate the instantiation of the remote plugins.

7 Experimental results

In order to verify the viability of our middleware, we performed experiments with the LADSPA dis-
tributed system. We created a LADSPA plugin (the waste time plugin) that simply copies its input
data to its output and then busy-waits for a certain time. When it starts operating, it busy-waits,
at each iteration, for as long as necessary to make the whole processing time of that iteration 100µs;
after 10s of operation, it busy-waits to make the iteration take 200µs; after another 10s, 300µs; and so
on. When the JACK server, jackd, starts issuing timing errors, we know the system cannot cope with
the amount of processing time used by the plugin and so we register the largest time an iteration can
take before the system stops functioning properly. The plugin also gathers data from the Linux /proc
filesystem about the system load in terms of user time and system time and, when the experiment is
over, saves the data to a file. With this setup, we were able to determine the maximum percentage
of the period that is available for any LADSPA plugin to process and, at the same time, the system
load generated during this processing. With this data, we are able to determine the overhead of our
middleware system. While 10s may seem a small amount of time, since each iteration takes less than
5ms, this is sufficient to run more than 2000 iterations of each configuration.

7.1 Software and hardware testbed

To run the experiments, we used the JACK daemon, jackd, version 0.72.4; it allowed us to communicate
with the sound card with low latency and experiment with several different interrupt frequencies;
the sound driver used was ALSA version 0.9.4. On top of jackd, we used the application jack-rack
[JACKRACK], version 1.4.1, to load and run our plugins. This application is an effects processor that
works as a jackd client loading LADSPA plugins and applying them to the data streams provided by
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jackd. We first made measurements with the waste time plugin running on the local machine, just as
any other LADSPA plugin. We then performed experiments in which jack-rack would load instances
of our proxy plugin, which would then handle the data to be processed to remote instances of the
waste time plugin. At the same time, we measured (using the /proc filesystem) system load on the
central machine. The experiments were run partly at 44.1KHz, partly at 96KHz audio sampling rate;
LADSPA and JACK treat all samples as 32 bit floats.

The central machine was an Athlon 1.4GHz PC with 256MB RAM, running Debian GNU/Linux
with Linux kernel version 2.4.20 with low latency patches applied; the audio card was an M-Audio
Delta44. The other machines ran a GNU/Linux system with the bare minimum to run the slave
application, under the same Linux kernel, version 2.4.20 with low latency patches applied. The remote
machines were: another athlon 1.4GHz PC with 256MB RAM, two athlon 1.1GHz PCs with 256MB
RAM, one AMD K6-2 400MHz PC with 192 MB RAM, two AMD K6-2 450MHz PCs with 192MB RAM,
and one AMD K6-2 350MHz PC with 192MB RAM. The athlons had onboard SiS900 network hardware,
while the K6s used low-cost 8139-based PCI network cards. The machines were interconnected by an
Encore switching hub model ENH908-NWY+11.

7.2 Experiment limitations

The waste time plugin, being very simple, probably allows for the memory cache on the machines where
it runs on to be filled with the code needed by the kernel to perform both network communication
and task switching; that probably would not be the case with a real application. Therefore, we should
expect real applications to have a higher overhead than what was measured. On the other hand, as we
will see, the measured overhead was almost nonexistent.

While jackd under Linux runs very well, there were occasional “xruns”, that is, the system was
unable to read or write a complete buffer to or from the sound card in time. Xruns of about 30–60µs

occurred sporadically, always when the load of audio processing was relatively low; they even occurred
when jackd was running without any clients attached and the machine was not performing any audio
processing. The probable reason is that, while the typical scheduling latency of the patched kernel is
about 500µs, it can sometimes be higher, causing longer delays. When the processing load is higher,
the kernel most likely schedules less processes between each interrupt, reducing other I/O activity and,
therefore, staying closer to the typical scheduling latency of 500µs. This problem prevented us from
experimenting with periods shorter than 1.45ms, when these random xruns became too common. It is
probably possible to reduce or eliminate these xruns by configuring jackd to use three buffers instead of
two to communicate with the sound card (at the cost of additional latency) or with a faster machine,
but we did not try to do that; instead, we just ignored these sporadic xruns, since they were not related
to our system and were easily discernible from the xruns caused by system overload.

7.3 Results

We first tried to determine the maximum time the waste time plugin could spend at each period when
running at the local machine; this experiment serves as a comparison for the distributed processing in
which we are interested (Figure 5).

As expected, the smaller periods make the system less efficient, because they imply a higher interrupt
rate and, therefore, a higher overhead. Besides that, the scheduling latency is proportionally higher
with shorter periods: after the interrupt is issued by the sound card, the kernel takes approximately
500µs to schedule the application to run and process the data, which is approximately 30% of the

11Many thanks to the folks at fonte design for providing us with the test environment.
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(a) at 44.1KHz audio sampling rate
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(b) at 96KHz audio sampling rate

Figure 5: On a single machine, longer periods allow the plugin to use more CPU
time, increasing efficiency.

time between interruptions when the period size is 1.45ms. Finally, jitter in the scheduling latency
become more troublesome with shorter periods. At 44.1KHz with a period of 1.45ms, 89% of the
period size was usable by the plugin; the load on the system was 91% of user time (the CPU time spent
by ordinary processes) and 1% of system time (the CPU time spent by the kernel performing general
tasks). Therefore, we could not use more than 92% of the CPU time with this period size. At 96KHz,
the maximum usable time in each period and the maximum CPU load obtainable were a little lower.
At 44.1KHz with period sizes of 3.0ms or more, around 96% of the period size was usable by the plugin;
the load of the system was around 97% of user time and 0% of system time. For these period sizes,
therefore, we could use nearly all the CPU time to do the processing.

The next experiment was to run the waste time plugin on remote machines and have them commu-
nicate with the central machine with window size zero, i.e., the master machine would busy-wait until
the processed data arrived (Figure 6).

This proved how impractical that approach would be: there is simply no gain in this setup. The
user and system times measured on the central machine can be misleading: they correspond mainly
to busy-waiting, which involves a user-space loop that performs a system call (read()); much of this
time could be used by a local plugin instead, processing other data in parallel with the remote machine.
Still, the maximum percentage of the period size usable for processing by a single remote machine is
73%; for two remote machines, this drops to 27% at each machine; for three machines, this drops even
more, to 9% at each machine. These gains do not justify distributed processing.

After that, we wanted to measure the local overhead introduced by the system without busy-waiting;
in order to do that, we set up the communications layer to use a window of size two. Then we ran the
experiment with a period of 2.18ms at 44.1KHz with 1, 2, 3, and 4 remote machines and at 96KHz
with 4 and 7 machines (Figure 7).

The load generated by the system on the central machine, while significant, is totally acceptable;
it also grows approximately linearly, which was expected. We also verified that the load on the central
machine generated by 4 remote machines with 96KHz sample rate is almost the same as the load
generated by 4 remote machines with 44.1KHz sample rate, which actually came as a surprise.
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Figure 6: Remote usable CPU time decreases rapidly with more machines when
using window size zero.
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Figure 7: The load on the central CPU increases linearly with the number of remote
machines.

Finally, we wanted to determine the maximum time a plugin could spend at each period when
running at several remote machines using a window of size one. We ran the experiment with 4 remote
machines at 96KHz audio sample rate using different period sizes and with 7 remote machines using
a period of 2.19ms (Figure 8). This showed that the remote CPU usage is excellent with a relatively
low local overhead, even with this many machines: with a period size of 2.19ms and a sample rate of
96KHz, the waste time plugin could run remotely for 96% of the period, yielding 99% of user time CPU
usage. The CPU usage on the central machine was about the same as on the previous experiment, 45%
user time and 20% system time.

As we just saw, truly synchronous distributed processing (using window size zero) is not a practical
approach to the problem of distributing multimedia processing with low latency. Using the sliding
windows idea, though, proved to be an efficient approach: with window size one, it made it possible
for us to distribute 96KHz audio to be processed by 7 remote machines with very little overhead on
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Figure 8: CPU time available for the plugin on the remote machines is similar to
that on a single machine.

these remote machines, allowing the plugin on them to use almost 100% of the CPU time and with
an acceptable load on the central machine. It is reasonable to expect the maximum number of remote
machines to be even higher with the hardware used, since the network bandwidth and the central
machine have not achieved their maximum usage during the experiments. With a faster processor
and a higher-end network interface (which presumably reduces the CPU usage for networking) on the
central machine, the limit would probably be imposed by the network physical speed.

8 Conclusions and future work

Distributed multimedia processing with low latency offers some special difficulties; this paper presents
a simple approach to overcome these difficulties. The ability to perform multimedia processing in
distributed systems opens several possibilities; while this paper addresses only performance aspects,
there may be applications that benefit from distributed processing in other ways. For instance, a
distributed interactive multimedia application that uses multiple displays in a room and reacts to
user input may use a mechanism similar to the one presented here to handle the user input and the
corresponding distributed output with low latency.

It would be interesting to be able to process multiple data streams on each of the remote machines;
we must perform more experiments to investigate the impact of the resulting additional context switches
to the performance of the system. Extending the middleware presented here to operate with pipelined
processing might prove useful, since there is an upper limit to the number of parallel machines that the
central machine can coordinate.

While the middleware system presented here intends to be generic, the current work conducted
with it was heavily based on audio processing. An investigation of the applicability of this system to
other forms of multimedia should be conducted in order to investigate limitations, possibilities, and
further enhancements. High-resolution video, in particular, involves too much data to be transferred
uncompressed in a Fast Ethernet in real-time, which suggests the use of Gigabit Ethernet to perform
the communication.
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