
Rqy H. Campbell, Nayeem Islam, David Raila and Peter Madany 

DESIGNING AND IMPLEMENTING 
CHOICES: AN OBJECT-ORIENTED 

SYSTEM IN C++ 

e describe our experiences in 
constructing Choices and a de- 
sign methodology that extends 
existing design approaches by 
explicitly encouraging speciali- 
zation, as well as design and 
code reuse. Although many 
operating system techniques 
and designs are well docu- 
mented, few object-oriented 
operating systems exist and have 
been described. SOS [23], 

CHORUS [18], and Apertos [26] are other examples of 
object-oriented operating systems. 

None of the descriptions of the design of these operating 
systems provide a methodology for design reuse or describe 
how the design methodology may be used in conjunction 
with prototyping. We believe it would be possible to extend 
our methodology to the design of any of these operating 
systems. Despite the large number of previous studies and 
implementations of operating system techniques, there 
were few guidelines to follow in our project to build Choices, 

Instead, we developed our own methodolgy as the project 
progressed, adopting many useful ideas from the object- 
oriented programming and software engineering research 
communities. We made extensive use of prototyping to 
guide our efforts, and this approach influenced our con- 
cerns for reusing designs, This article is written with the 
hindsight of building and porting Choices to a variety of dif- 
ferent hardware platforms. Finally, we discuss the run-time 
facilities we built to augment the C ++ language in 
order to better support the construction of an object- 
oriented operating system. These facilities provide garbage 
collection, first-class classes, dynamically loadable code, 

and object-oriented debugging. 
Existing commercial operating 

systems provide limited support for soft- 
ware reuse and customized system sup- 
port for applications. For example, few 
systems support multiple architectural 
models for parallelism, nressage- 
passing systems, or distributed 
programming environments. There- 
fore many programs, in&ding parallel 
and distributed applications, cannel 
easily be ported to different machine& 
without substantial modification. An 
object-oriented operating system en- 
courages reuse by including mech- 
anisms and support for inheritance 
and specialization. This approach 
supplements the microkernel, client/ 
serv.3 operating system organizations 
used in systems such as Mach [17], V 
System [6], and Amoeba [25] to intru~ 
duce more flexibility for application 
support. Inheritance encourages the 
reduction of the implementation of 
different system services to a small 
number of classes that can be spc- 
cialized and combined to achiew a 
desired result. 

Choices [5] is an object-oriented 
operating system that we built using 
an object-oriented language (C ++ 
[24]). Objects are used to model both 
the hardware interface, the application 
interface, and all operating system 
concepts including system resources, 
mechanisms, and policies. Choker sup- 
ports an object-oriented application 
interface based on objects, inheritance, 
and polymorphism. The application 
interface is defined by method invo- 
cations from objects in user space to 
objects in kernel space. In user space, 
a kernel object is represented by an 
ObjectProxy [19]. The otajrcts in C/to& 
arc organized within a class inhcr- 
itance hierarchy. Thr classes arc 
modeled as objects at run time and 
may be used to browse or examine the 
contents ofan actual Chozca operating 




















