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DESIGNING AND IMPLEMENTING
CHOICES: AN OBJECT-ORIENTED
SYSTEM IN C++

e describe our experiences in
constructing Chowes and a de-
sign methodology that extends
existing design approaches by
explicitly encouraging speciali-
zation, as well as design and
code reuse. Although many
operating system techniques
and designs are well docu-
mented, few object-oriented
operating systems exist and have
been described. SOS [23],
CHORUS [18], and Apertos [26] are other examples of
object-oriented operating systems.

None of the descriptions of the design of these operating
systems provide a methodology for design reuse or describe
how the design methodology may be used in conjunction
with prototyping. We believe it would be possible to extend
our methodology to the design of any of these operating
systems. Despite the large number of previous studies and
implementations of operating system techniques, there
were few guidelines to follow in our project to build Chorces.
Instead, we developed our own methodolgy as the project
progressed, adopting many useful ideas from the object-
oriented programming and software engineering research
commmunities. We made extensive use of prototyping to
guide our efforts, and this approach influenced our con-
cerns for reusing designs. This article is written with the
hindsight of building and porting Choices to a variety of dif-
ferent hardware platforms. Finally, we discuss the run-time
facilities we built to augment the C++ language in
order to better support the construction of an object-
oriented operating system. These facilities provide garbage
collection, first-class classes, dynamically loadable code,

and object-oriented debuygging.

Existing commercial operating
systems provide limited support for soft-
ware reuse and customized system sup-
port for applications. For example, few
systems support multiple architectural
models for parallelism, message-
passing systems, or distributed
programming environments. There-
fore many programs, including parallel
and distributed applications, cannot
easily be ported to different machines
without substantial modification. An
object-oriented operating system en-
courages reuse by including mech-
anisms and support for inheritance
and specialization. This approach
supplements the microkernel, client/
server operating system organizations
used in systems such as Mach [17], V
System [6], and Amoeba [25] wo intro-
duce more flexibility for application
support. Inheritance encourages the
reduction of the implementation of
different system services to a small
number of classes that can be spe-
cialized and combined to achieve a
desired result.

Choices [5] is an object-oriented
operating system that we built using
an object-oriented language (C++
[24]). Objects are used to model both
the hardware interface, the application
interface, and all operating system
concepts including system resources,
mechanisms, and policies, Choces sup-
ports an chject-oriented application
interface based on objects, inheritance,
and polymorphism. The application
interface is defined by method invo-
cations from objects in user space to
objects in kernel space. In user space,
a kernel object is represented by an
ObjectProxy [19]. The objects in Choices
are organized within a class inher-
itance hierarchy. The classes are
modeled as objects at run time and
may be used to browse or examine the
contents of an actual Choices operating
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system. User, server, and system
objects can be defined, created, and
deleted dynamically. The class hierar-
chies and subsystems we have built are
intended to allow further specialization
to support a variety of future operating
systermn implementation techniques.
Currently, we support several file
system formats and interfaces [14],
multiple networking strategies
including TCP/IP, several message-
passing schemes [9], distributed and
shared virtual memory [22], and both
shared-memory and distributed-
memory multiprocessing.

Here, we describe a methodology
for designing and implementing an
object-oriented operating system in
C++. Since C++ supports a mini-
malist view of object-oriented pro-
gramming, we extended C++ with
run-time support [15, 16] and devel-
oped a methodology for reusing de-
sign within an operating system [2—
4]. The strengths of C++ are that it
is efficient [9, 20, 21], portable, and
available on a variety of platforms. It
is also becoming a popular language
in the computing industry. This arti-
cle differs from an earlier article [4]
in that it describes the precise design

rules and discusses the integration of

our previous methodologies with
prototyping.

Our methodology, which is based
on frameworks [7], captures design
insights using entity relationship dia-
grams, datatlow diagrams, control
tlow diagrams, class hierarchies, class
interfaces, and path expressions. We
will concentrate here on control flow
diagrams. Less conventionally, these
design properties are inherited from
design step to design step, from ar-
chitectural design to detailed design,
and from prototype to final system.
We validate the abstract properties of
the system by building prototypes
that inherit these properties from the
abstract design. We customize the
inherited design for evaluation in a
convenient prototyping environ-
ment. Inheritance ensures that our
prototype is realistic and consistent
with the design for the final system.
Ideally, the prototyping environ-
ment models as closely as possible the
eventual host computer hardware. In
practice, the prototype is a specializa-
tion of the design that is targeted to
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run on the Unix operating system in
a convenient environment. The pro-
totype allows quick experimentation
with design alternatives and encour-
ages reorganization of the class hier-
archies of the system to achieve reuse
of design, interface specifications,
and code. The native implementa-
tions of the system are specializations
of the design for Sun SPARCstation
1 and 2, Encore Multimax N§32332,
IBM AT-compatible Intel 386 and
486 computers, and the Intel Hyper-
cube multicomputer.

Our decision to use C++ was cir-
cumscribed by the need to demon-
strate an efficient object-oriented
operating system. Many of the avail-
able object-oriented languages are
either interpreted and slow, have
considerable run-time support, or
include predefined notions of funda-
mental parts of an operating system
such as processes, synchronization,
messages, and exceptions. In Choices,
we have designed and evaluated dif-
ferent implementations of these fun-
damental concepts. Coding an ob-
ject-oriented operating system in a
nonobject-oriented language has the
disadvantages of requiring addi-
tional coding effort and reducing the
effectiveness of compile-time check-
ing. C++'s strengths are that it lacks
complex run-time features, enforces
compile-time checking, and compiles
into efficient code [21]. Its weakness
is that many features of an object-
oriented language are either not
implemented or are ditficult to im-
plement in C++. In Choices, we built
a class library to augment the lan-
guage to include first-class Classes,
dynamic loading, reference count-
ing, debugging, and proxies—
representatives of indirectly accessi-
ble objects.

Methodology
Large and complex software systems
are often divided into modules, each
module independently designed,
and the modules are then assembled
into the final system. The decompo-
sition of the system into modules is
often called an architectural design
for the system.

A framework 1s an architectural
design for an object-oriented system.
It describes the component objects of
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the system and the way they interact.
In Choices, the components of the sys-
tem are detined in classes. The inter-
actions among components are de-
fined by constraints, inheritance,
inclusion  polymorphism  (imple-
mented through virtual functions in
C++), and rules of composition.
Chotces” frameworks use single inher-
itance to define class hierarchies and
C++ subtyping to express inclusion
polymorphism. In practice, we have
found the design of a complex sys-
tem such as an operating system is
best organized by a framework that
guides the design of subframeworks
for subsystems. The subframeworks
refine the general operating system
tramework, as it applies to a specific
subsystem.

The framework for Choices pro-
vides generalized components and
constraints to which the specialized
subframeworks must conform. It in-
troduces the notion of a Process or a
sequence of actions, the address
space of a Process called Domain, and
the data or MemoryObjects that can be
accessed by the Process in its Domain
(2). The subframeworks introduce
additional components and con-
straints and subclass some of the
components of the framework. Ex-
ample Choices subframeworks in-
clude the virtual-memory subsystem,
the process management subsystem,
the file system, and the message-
passing subsystem. Recursively, these
subframeworks may be refined
further.

Frameworks augment the tradi-
tional layered design of operating
systems [3]. A layer represents an
abstract machine that hides machine
dependencies and provides new ser-
vices. A framework introduces
classes of components that encapsu-
late machine dependencies and de-
fine new services. Algorithms or data
structures in one layer may be similar
to those in other layers, but the layer
approach to design has no way to
express that similarity. In contrast, a
framework may have several differ-
ent instantiations and implementa-
tions within a system; it may be re-
used.

In our design of Choices, a frame-
work for a particular subsystem is
characterized by a number of attri-



butes. These autributes are inherited
by specializations of the framework.
For example, the entity relationships
between a process, its domain, and its
memory objects are inherited by the
three specializations of the Choices
framework for system, interrupt,
and application processes [2]. We
have found the following attributes
of significance in the design and doc-
umentation of an object-oriented
operating system: data flow, entity
relationships, control flow, path ex-
pressions, class hierarchies, and class
interfaces [3, 4]. Within a specializa-
tion of a framework, the inherited
attributes may be extended accord-
ing to a set of rules ensuring the spe-
cialization is consistent with the gen-
eral design of the framework.
Inheriting the attributes of a
framework in its specialization re-
sults in large-scale design reuse. In-
heritance documents the common

attributes of different applications of

the same design. Specialization of the
different attributes of a framework
proceeds in lock-step in our design
process. This aids checking the con-
sistency between design steps while a
framework is iteratively specialized
from a general architectural design
into a specific architectural design
for a particular subsystem. Finally,
objects defined by a framework have
properties that can be checked
against the attributes of the frame-
work. Our rules for specializing in-
herited attributes are:

1. An abstract class may be replaced
by a concrete class.

2. Abstract and concrete classes may
be added.

3. Additional data flows [10], control
flows [9], entity relations, and path
expressions may be added.

These rules are designed to support
substitutability. A specialization may
be used wherever a generalization is
expected.

Figure I shows, as an example, the
fault-handling control flow diagram
of the Choices virtual-memory system.
Other attributes, including dataflow,
synchronization, and entity relation-
ships, are described in [2], [3], and
[4]. The virtual-memory subframe-
work has six components. They are
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the Memory Object, Domain, PageFrame
Allocator,  MemoryObjectCache,  Ad-
dressTranslation, and Disk. It inherits
Process, Domain, and MemoryObject
and their attributes from the Choices
framework. The MemoryObjectCache
caches pages of a MemoryObject in
physical memory. It supervises the
transfer of the data in the MemoryOb-
Ject to and from the cache in physical
memory. The PageFrameAllocator al-
locates and deallocates pages of
physical memory and is used by the
MemoryObjectCaches (o maintain their
caches. The AddressTranslation encap-
sulates the address translation hard-
ware of the computer that maps vir-
tual addresses into  physical
addresses. Disk encapsulates a physi-
cal storage device like a disk or a
RAM disk and is used as backing
storage for a MemoryObject.

The control flows for both the ab-
stract design and specialization of the
virtual-memory system are shown in
Figure 1. In this diagram, control is
shown flowing between classes of
objects. In the actual implementa-
tion, the control flow will occur be-
tween instances of the classes. An
arrow from a source class to a desti-
nation class represents a method call
from an instance of the source class
to an instance of the destination class.
A dashed arrow represents a return
from a method call. A thick arrow
condenses a call to a method and a
return from that method. Special
entry and exit nodes represent the
entry and exit points of the control
flow graph. The number labeling an
arrow records the ordering of a con-
trol flow within a sequence of actions.

The diagram labeled Abstract
Control Flow in Figure 1 shows the
control flow that is inherited by, and
therefore common to, all specializa-
tions of the virtual-memory subsys-
tem. For example, every instantiation
of the framework will invoke the
method addMapping of an object
subclassed from AddressTranslation
when updating a MemoryObjectCache.
This flow of control will always occur
after the method read on the Disk
returns but before the method cache
returns from the MemoryObjectCache.
Specializations of the sybsystem in-
herit the abstract control flow and
augment the design by introducing

subclasses. The diagram labeled Vir-
tual Choices Concrete Control Flow
shows the inherited virtual-memory
subsystem control flow for the proto-
typing environment. The classes Disk
and AddressTranslation are subclassed
to accommodate specializations for
the prototyping environment (shown
in  Figure 1 as VCDisk and
VCPageTuable). The MemoryObject-
Cache has been specialized to allow
paging using the PagedMemoryOb-
jectCache. The control flows between
classes are inherited without modifi-
cation showing a high degree of de-
sign reuse between the abstract de-
sign and the prototype. This
inheritance instills considerable con-
fidence that the prototype represents
a consistent implementation of the
design. The additional control flows
do not reorder or remove the inher-
ited control flows and specialize the
abstract design. In our current meth-
odology we have not found the need
to remove control flows. If control
flows are removed, it makes the
reuse of the design much more com-
plex. Our current methodology ben-
efits from the simplicity of the design
rules.

Ports of Choices to bare hardware
exhibit similar inheritance and spe-
cializations of the design. Again, the
control flows are inherited without
substantial additions, and this pro-
vides confidence that other Choices
implementations are consistent with
the VirtualChoices prototype. The
parts of the control flow that are
common and have been validated
using the VirtualChoices prototype
should be valid for Choices on the
bare hardware. For example, in the
SPARCstation2 port of the Choices
operating system, the Disk and Ad-
dressTranslation are replaced by the
SPARCstationDisk and the
SPARCstationTranslation concrete
subclasses. The resultant concrete
control flow diagram is shown in Fig-
ure 2.

The control flow diagrams for the
SPARCstation2 and VirtualChoices
ports are quite similar, differing only
in two concrete subclasses. Both
ports, however, use the same Paged-
MemoryObjectCache, allowing the pag-
ing algorithms to be tested on Virtual
Choices before being tested on the
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SPARCstation port. This last exam-
ple stresses the importance of our
methodology. The abstract design is
maintained between ports.

Prototyping

Choices has a reusable design pro-
vided by its frameworks that can be
specialized to port Choices to differ-
ent hardware architectures or to pro-
totype Choices in a “developer-
friendly” environment such as the
Unix operating system. We could
have used any operating system as
the prototyping platform. We chose
Unix because it is widely available.

the inherited attributes, there is a
large degree of confidence that the
prototype and the different ports are
consistent in their behaviors.

Virtual Choices

VirtualChoices, VC, 1s a protolyping
tool, and because its behavior accu-
rately reflects the behavior of other
implementations of Choices on bare
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hardware, it is an effective port for
Choices to the “Unix virtual ma-
chine.”! Within the design of Choices,
code modules representing machine-
dependent and processor-dependent
algorithms are encapsulated in con-
crete classes. As an example, in the
virtual-memory framework shown in
Figure 1, the classes AddressTransla-
tion and Dusk are specialized in imple-
mentations with machine-dependent
concrete classes.

The VirtualChoices implementation
specializes the Choices architectural
design with concrete subclasses (see
Figure 1) that implement their func-
tions using Unix system calls. Unlike
a simulation [13], VirtualChoices be-
haves like a port of Choices to bare
hardware. It supports Choices appli-
cations, the Choices trap-based appli-
cation-kernel interface, virtual mem-
ory, paging and page faults, multiple
virtual processors, disks, and inter-
rupt-based drivers for the console,
timers, and networking. Virtual-
Choices provides a portable, easy-to-
use, inexpensive, and tool-rich pro-
totyping environment for Cheices.

VirtualChowes is built using two
basic mechanisms: the signal mecha-
nism is programmed to model hard-
ware interrupts for the Choices ker-
nel, and the memory-mapped file
system is programmed to model
Choices physical memory and the
behavior of a hardware virtual-
memory address translation unit.

Interrupts, exceptions, and the
processor. In Choices, the abstract
class Processor encapsulates and rep-
resents the machine-dependent im-
plementation of interrupt vectors
and interrupt handlers. It is de-
signed to map the occurrence of a
hardware interrupt or trap into the
invocation of a raise method on an
Exception object. An Exception object is
created for every interrupt or trap in
a Choiwces system. The raise method
handles the condition that caused the
trap. VirtualChoices uses the Unix
process thread of control to execute
code, and it uses signals to represent
hardware interrupts. VCProcessor is a
concrete subclass of Processor that

'VirtualChoices currently runs on the Sun Mi-
crosystems’ SUNOS 4.1 version of the Unix
operating system.
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specializes  the abstract  Processor
methods 10 catch signals represent-
ing interrupts and traps. The
VCProcessor catches signals that are
meaningful to VirtualChoices by in-
stalling an assist function as the han-
dler for signals caused by I/O, page
faults, umers, and application traps
into the kernel. The assist function
maps the signals into corresponding
raise method calls on Exceptions. The
Processor methods that disable and
restore interrupts are implemented
in VCProcessor by means of the Unix
“sigsetmask” call, which blocks and
releases signals appropriately.
Virtual-memory support. Virtual-
Choices uses the memory-mapped file
systemn to implement Choices physical
memory and the behavior of a hard-
ware virtual-memory address trans-
lation table. Two regions of Unix vir-
tual memory are reserved for Choices
application and kernel virtual-
memory ranges. The Choices physical
memory is represented as a Unix file,
and logical pages of the file are mem-
ory mapped into the Choices virtual-
memory regions on page boundaries.
The VCPageTable, a subclass of Ad-
dressTranslation, manages the map-
pings using the Unix memory-
mapped file system primitives and
stores the mappings as an encapsu-
lated data structure to facilitate
changing the virtual-memory envi-
ronment when page tables are
switched. Figure 1 shows classes in-
volved in the virtual-memory subsys-
tem of Choices and VirtualChoices.
The bus and segment signals, SIG-
BUS and SIGSEGYV, occur when
Choices applications and system pro-
grams access virtual-memory ad-
dresses that have not been memory
mapped into a page of the physical-
memory file. The VCProcessor imple-
mentation maps these signals to the
raise method on the Choices VMEx-
ception. The VMException calls the
repairFault method on the Domain
of the current Process to handle the
fault. The VirtualChoices control flow
diagram is shown in Figure 1. The
control flow sequence for Virtual-
Choices is the inherited Abstract Con-
trol Flow with specializations pro-
vided by VirtualChoices subclasses.
Devices. The VCDisk class in Vir-
tualChoices specializes a protected

Disk doio method o read and write
logical blocks of a Unix file repre-
senting a Choices disk (see Figure 1).
The doio method is implemented
using the Unix “read” and “write”
system calls. In the diagram, the disk
is being used as a backing store for
the MemoryObjects in the Domain of a
Choices Process.

VirtualChoices also supports inter-
rupt-driven I/O for the console and
Ethernet by catching the SIGIO sig-
nal and using nonblocking Unix
“read” and “write” calls. The Unix
interval timer is programmed to cre-
ate periodic interrupts, and these are
used to drive the timing within
VirtualChaoices.

The Benefits of Prototyping
VirtualChoices  provides a
friendly” debugging and profiling
environment for Choices operating
system designs. It can be used to pro-
totype Choices’ machine-independent
framework code.

Debugging VirtualChoices within
the Unix environment is enhanced
by a quick reboot/debug cycle time.
Further, Unix profiling and debug-
ging tools can be used for design and
debugging. Because VirtualChoices is
a complete implementation of Chotces
that reuses the Choices frameworks
directly, machine-independent code
developed using VirtualChoices is di-
rectly portable to other Choices plat-
forms.

“user-

Run-Time Support for Object-
Oriented Systems

In the previous sections, we dis-
cussed a design methodology and
prototyping  environment  that
proved useful in designing C++
code for the Chowes operating sys-
temn. In addition to these approaches,
we also found the code development
process could be made more produc-
tive by augmenting the C++ lan-
guage with a library that provided
facilities more often found in object-
oriented languages like Smalltalk. In
several cases, the facilies consisted
of a set of base classes and a set of
programmer conventions that dic-
tated their use. The facilities we
found of value are:

¢ carbage collection
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* the representation of a class by an
object at run time

¢ the dynamic loading of new sub-
classes and code

¢ support for debugging classes and
instances at run time

These facilities sped debugging and
simplified the code of many parts of
the operating system, for example,
the file system, application interface,
name servers, and persistent object
code. In this section, we review each
of these facilities.

Garbage Collection

In Chotces, all resources are repre-
sented as objects. In C++, objects
must be both constructed and de-
leted explicitly. This forces the pro-
grammer to determine when each
object should be deleted. However,
objects representing resources in
Chotces may be shared by Processes in
several Domains. It thus becomes very
difficult for a programmer to deter-
mine when it is safe to delete an ob-
ject. Automatic deletion of objects
when they are no longer required
simplifies code and eliminates system
programming €rrors.

Although ad hoc implementations
of reference counting could be used
to determine when to delete objects,
the problem arises so often in the
implementation of Choices that we
embedded reference counting within
the C++ base classes of the system.
We chose reference counting for two
reasons: first, reference counting has
predictable space and time over-
heads; and second, we did not want
to allow the possible storage leaks
that can result from using a conser-
vative garbage collector. Reference
counting does not properly handle
cyclic data structures. We were able
to avoid this problem, however, by
identifying all pointer cycles in our
design and designating one of the
pointers in each cycle as a “weak”
pointer. Weak pointers are not
counted as references, but they must
be maintained carefully to avoid dan-
gling pointers.

Reference-counting functions. A set
of classes, methods, and program-
ming conventions was designed to
automate, as much as possible, refer-
ence counting for object deletion. All

objects in the system that require au-
tomatic deletion inherit reference-
counting behavior from class Object,
which has an integer reference count
and five member functions related to
this behavior: Object(), reference(),
unreference( ), noRemainingRefer-
ences(), and ~ Object().

The constructor for an Object ini-
tializes its reference count. The pub-
lic member function reference incre-
ments the object’s reference count; it
must be called each time a pointer to
an object is stored. The public mem-
ber function unreference decre-
ments the object’s reference count
and calls noRemainingReferences if
the object’s reference count reaches
zero. The unreference method must
be called each time a pointer to an
object is overwritten. The noRemain-
ingReferences() method, which
should only be called by wun-
reference, calls the object’s destruc-
tor by deleting “this.” This method
can be overloaded to define other
behavior if necessary. The protected,
virtual destructor for class Object
should only be called by
noRemainingReferences. To avoid
premature deletion of objects, all
subclasses of class Object must define
protected destructors.

These five methods provide an
effective mechanism that implements
reference-counting behavior for ob-
jects, but they still place too heavy a
burden on the programmer. This
burden is the requirement that calls
to reference and unreference func-
tions be placed at ail appropriate
places throughout the code. Experi-
ence showed this requirement was
too difficult to satisfy. To remove this
burden, we chose to treat points to
reference-counted objects as objects
themselves.

Pointers as objects. The ObjectStar
class defines “first-class” pointers to
objects. Instances of ObjectStar have a
traditional C++ pointer (Object *
-pointer) as their only data member.
ObjectStar defines constructors, de-
structors, and assignment methods
that call the reference and unrefer-
ence methods on the object that is
pointed to when necessary. ObjectStar
defines no virtual member functions,
thus its instances vtable
pointer and require same

have no

the
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amount of storage as a traditional
C++ pointer. We use ObjectStars
wherever traditional C++ pointers
would normally be used for member
variables, local variables, global vari-
ables, and return values from func-
tions,

Classes as Objects

The motivation for representing
classes as run-time objects arises
from several requirements:

¢ Instances of new subclasses of sys-
tem abstract classes provide a mecha-
nism to extend the Choices applica-
tion interface in a controlled but
nontrivial manner.

e C++ provides safe and efficient
compile-time type checking. This
type checking can, however, be cir-
cumvented if references to objects
are passed between Domains. Run-
time classes allow run-time type
checking in such cases.

¢ Class enquiry functions allow class-
based, run-time, controllable debug-
ging, including the ability to list the
instances of a class.

¢ The classes of persistent objects
can be recorded as persistent objects.

First-class classes or class objects are
implemented in Choices using a class
called Class; they are similar to the
Dossters described in [8] except that
Classes also support dynamic code
linking and portable debugging.

Users can request information
about Class’s place in the hierarchy. It
is searched for by name in the ker-
nel’s NameServer, and the requested
information is displayed. There are
three commands for displaying class
hierarchy information:

1. ancestors, which recursively dis-
plays the superclasses of the given
class

2. descendents, which recursively dis-
plays the subclasses of the given class
3. hierarchy, which displays first the
superclasses and then the subclasses
of the class

An example of the hierarchy com-
mand is:

Choices> hierarchy UNIXInode
Object
MemoryObject
PersistentMemoryObject
FileObject
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if (ctor == 0) {
COFFLoader * loader = 0;
loader = new Codeloader(className);
delete loader;
if (ctor == 0) return(0);
Object * obj = (*ctor)(source);
return(obj); Dynamic constructor shared
} by all loadable classes

Figure 3. Dynamic code loading
in Choices

Classes or Objects. 'The Chowes com-
mand interpreter provides an inter-
active interface to these debugging
operations, One can also use a stan-
dard debugger such as gdb to control
the Choices object-oriented debug-
ging tacility.

The debugging facility 1s imple-
mented as a set of operatons on Ob-
Jects and Class, plus statements at the
beginning and end of each member
function. Operations on objects are
divided into four categories: con-
structors and destructors, reference-
counting functions, public member
functions, and private member func-
tions. For any class of objects, one
can choose to display information
about the ivocations of any combi-
nation of these four types of opera-
tons.

Performance

Object-oriented systems
can have a comparable performance
to existing systems [9, 11, 21]. In this
section, we review briefly the perfor-
mance of our operating system on
two architectures: the SPARCsta-
tion2 the Encore Multimax
NS§32332 shared-memory multipro-
CESSOT.

operating

and

Table 1 shows the context switch
times between two application pro-
cesses. This includes the time to find
a new process to run. Next, it shows
the time for trapping into the kernel
using the Choices object-oriented
application interface, the Proxy Call
mechanism. The time for trapping
into the kernel and calling a method
on a kernel object increases by 5 u sec
on the SPARCstation2 and by 30 u
on the Encore Multimax for each
additional object passed.
shown the round-trip, send-reply

Last 1s

time for a 32-byte message sent from
process to process over a 10Mb/sec
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Ethernet interconnecting two Choices
SPARCstations. This is compared
with the time for sending the same
message from one application to
another on the same Choices Encore
Multimax shared-memory multipro-
cessor. Such numbers compare fa-
vorably with existing operating sys-
tems [1, 25]. Further specializations
of Choices continue to improve the
performance numbers.

summary

Since the inception of the project in
1987, we have conducted many ex-
periments demonstrating the bene-
fits, viability, and efficiency of an ob-

ject-oriented operating system [11,

20]. This article records many of the
practical lessons we have learned
from this experience, and we hope it
will be of value to our colleagues de-
veloping the next generation of ob-

ject-oriented operating systems:

* We chose to implement an object-
oriented operating system to help



UNIXInode <&
ATXInode
BSDInode
SVIDInode

There are also two commands for
displaying instances of classes:

1. members, which displays all in-
stances of the given class

2. kindred, which displays all in-
stances of the given class and its de-
scendants

Examples of these commands follow:

Choices> members SVIDInode
SVIDInode [45al180] (/) (:0:2:8)
1 instance.

Choices> kindred UNIXInode
BSDInode [466000] (/) (:0:0:3)
BSDInode [466100] (lost+found)
(:0:0:3)

8VIDInode [45a180] (/) (:0:2:R)

3 instances.

Adding Subciasses to a Running
C++ Program

Choices provides a dynamic loading
mechanism that permits applications
and system programs to add new sys-
tem services to the kernel at run-
time. A running program needs a
dynamic binding mechanism to ac-
cess newly loaded code. C++ has a
dynamic binding mechanism: the
virtual function table which is acces-
sible through the object's uviable
pointer. Once an object’s code has
been loaded and the object created,
its member functions can be invoked
through the vtable. However, C++
constructors, which assign vtable
pointers to objects at run tme, are
statically bound and cannot be invoked
directly from an existing preloaded
program. The problem to be solved
in an implementation of dynamic,
loadable C+ + code is to allow exist-
ing programs to call the constructors
defined in newly loaded classes. To
explain our solution to invoking
C++ constructors dynamically, we
define three kinds of constructor
functions: traditional C+ + construc-
tors, which have names like Ob-
ject::Object, addressable construc-
tors that call traditional constructors,
which we name in the manner Ob-
jectConstructor, and dynamic con-
structors used to construct objects
using the Class hierarchy, which we

name Class::constructor.

Traditional constructors cannot be
used directly by code that is intended
to access the dynamically loaded
methods of an object. Instead, the
code invokes the dynamic construc-
tor in the Class of the dynamically
loaded object. When the dynamic
constructor operation is invoked on
Class, it, in turn, invokes the address-
able constructor stored in its _con-
structor instance variable which has
been assigned by the loader. The
addressable constructor then invokes
the traditional constructor. Since the
class Class is always compiled and
loaded with the basic Choices kernel,
the dynamic constructor can be in-
voked by the code. The addressable
constructor is a function that is com-
piled at the same time as the tradi-
tional constructor. Thus, the ad-
dressable constructor can invoke the
traditional constructor directly. In
this way, the traditional constructor
can still be used to allocate and 1ni-
tialize heap storage for the loadable
object even though it cannot be ac-
cessed directly by existing software.

Chotces includes a subclass of the
abstract class CodeLoader for each
type of object file format used by the
operating system. A CodeLoader per-
forms the following operations: lo-
cate the symbol table for the running
program, locate the code for the
classes to be loaded, resolve unde-
fined symbols in the loaded code, re-
locate symbols in the loaded code,
install the address of the addressable
constructor in the corresponding
Class object’s -constructor instance
variable,

By making C++ classes loadable
in Choices, parts of the operating sys-
tem can be greatly simplified. For
example, the Choices file system sup-
ports many types of files. Code for
each type of file needs to be loaded
only when a request is made to access
that type of file. Thus, neither the
kernel nor user space is penalized for
the flexibility that is provided by the
file system. A further benefit of this
approach is that it makes loading the
class methods for persistent objects
simple. Figure 3 shows some of the
data structures used to support a
dynamic code-loading system in
Choices. All of the Classes in a running

Choices system form a single tree that
corresponds to the compile-time in-
heritance hierarchy. Figure 3 shows,
as an example, three of these Classes:
the abstract class PersistentStoreDic-
tionary, and the concrete classes Tar-
Dictionary? and  BSDDirectory.  All
three Classes share the same virtual
function table and therefore also
share the same dynamic constructor.
Abstract classes do not need address-
able constructors, since programs do
not directly create instances of ab-
stract classes; therefore, the Per-
sistentStoreDictionary class does not
have one. In this example, the ad-
dressable constructor for the
BSDDurectory class has already been
loaded, and the BSDDirectory Class
contains a pointer to it. The address-
able constructor for the TarDictionary
class has not yet been loaded. Any
program that tries to access an in-
stance of the TarDictionary class by
invoking the constructor method on
the TarDictionary Class will cause a
Codel.oader to be created. If the Code-
Loader successfully finds and loads
the code for the TarDictionary class, it
will update the ctor pointer in the
TarDictionary Class. The constructor
method can then call the newly
loaded addressable constructor,
which in turn will call the traditional
constructor for the
class.

TarDictionary

Portable Debugging
Debugging the kernel of an operat-
ing system is difficult, even if it is ob-
ject oriented. The problem is com-
pounded by a lack of a debugger that
can report events in terms of the ob-
jects and classes of which the system
is composed. Qur goal was to develop
a flexible debugging environment
that was integrated with the Choices
object-oriented architecture. There-
fore, we implemented a debugging
facility to selectively display messages
on the system console when an oper-
ation is invoked on an object.
Debugging messages can be
turned on or off at run time, both
programmatically and interactively.
Applications can control debugging
by invoking operations on selected

2A TarDictionary makes the names of the files
stored in a tar file appear as if they were in a
traditional Unix directory.
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solve the problem of porting parallel
applications to a variety of different
computer architectures. The frame-
work and inheritance methodology
we developed allowed us to organize
the design and code of the resulting
implementations.

e We selected C++ as an etficient,
viable implementation language for
object-oriented operating systems.
The language has a minimal number
ot object-oriented features. As we
developed Choices, we began to ap-
preciate many of the high-level fea-
tures that are available in other less
efficient object-oriented languages.
Most of the facilities we desired could
be programmed within C++ without
extending the language. This sug-
gests that an object-oriented lan-
guage for systems programming
needs a small set of appropriate ob-
ject-oriented features.

e C++ does not have concurrent-
programming features. We were able
to build such features using C++
language primitives, classes, and sub-
classes. For our work, the lack of
these C++ features was an advan-
tage, since it allowed us to develop
operating system implementations of
concurrent programming that were
object-oriented and benefited from
mheritance and polymorphism.

® In developing libraries to support
missing  object-oriented  language
facilities and concurrency, the design
methodology helped organize the
resulting code.

¢ The design methodology serves as
excellent documentation for the de-
sign of Choices.

® Progressing through a series of
experiments with customized file sys-
tems, message-passing systems, and
virtual memory, we generalized the
class hierarchies of Choices to provide
a more structured organization to
our system. Building usetul generali-
zations and class hierarchies is differ-
ent trom stepwise refinement of a
single solution. It is, instead, a way of
organizing  conclusions  gathered
trom iterative design and prototyp-
ing.

® The object-oriented encapsulation
of the hardware in our system al-
lowed us to use inheritance and spe-
cialization to prototype the system in

Table 1. The performance of the basic Choices operating system

primitives

Performance of Choices (in usec)

OS Primitive

SPARCstation I1

Encore Multimax

Context switching 150 412
Proxy call 38 72
Message passing 1,800 700

an easy-to-use software development
environment and port the system to
various hardware platforms.

In conclusion, we advocate the
design of an object-oriented operat-
ing system using frameworks as an
effective software engineering tech-
nique, both to increase productivity
and to enhance one’s ability to build
innovative new systems through de-
sign and code reuse. Using the
frameworks as a tool provides high-
level architectural-design reuse. Fi-
nally, prototyping is a powerful tool
when coupled with ()Bj(:('t—()ricm(?d
design and frameworks. @
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