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ABSTRACT
InteGrade is an object-oriented grid middleware infrastruc-
ture whose goal is to leverage existing computational re-
sources in organizations. Rather than relying on dedicated
hardware such as reserved clusters, InteGrade focuses on
using desktops in users’ offices, machines in computer labo-
ratories, shared workstations, as well as dedicated clusters.
In this paper, we describe the support for the execution
of highly coupled parallel applications on top of InteGrade.
The paper describes the implementation of the middleware
to support BSP parallel applications (with global synchro-
nization points), and presents experimental results.

1. INTRODUCTION
InteGrade [6] is a Grid Computing system aimed at com-
modity workstations such as household PCs, corporate em-
ployee workstations, and PCs in shared laboratories. It uses
the idle computing power of these machines to perform use-
ful computation. Our goal is to allow organizations to use
their existing computing infrastructure to perform useful
computation, without requiring the purchase of additional
hardware. Moreover, users who share the idle portion of
their resources should have their quality of service preserved
by the InteGrade middleware.

In spite of the great computing power available today in
most organizations in the form of desktop PCs, there are still
difficulties in using the idle cycles of these machines for use-
ful computation. To solve this, we implemented support for
distributing and executing two different kinds of parallel ap-
plications. First, we extended the interface of InteGrade to
support parametric applications in which there is no commu-
nication among application nodes. This kind of application,
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included in the bag-of-tasks class, is currently supported by
other grid middleware such as OurGrid (www.ourgrid.org)
and BOINC [1], on non-dedicated machines. Second, we im-
plemented a modern parallel computing model (Bulk Syn-
chronous Parallel (BSP) [21, 16]) to support applications
whose nodes do communicate with each other, i.e., highly-
coupled parallel applications. The BSP reference implemen-
tation is University of Oxford’s BSPlib [19]. The BSPlib
core library is simple and is composed of only 20 functions.
When compared to PVM [18] and MPI [5], two popular par-
allel computing libraries, BSP offers a much more elegant
computing model and simpler programming library.

Within BSP, we have global synchronization points among
the processes of a parallel application. Using this synchro-
nization points the BSP applications can be better adapted
to an environment subject to frequent changes such as the
Grid. The BSP synchronization points greatly facilitates the
implementation of checkpointing to permit recovery in the
presence of failures, which are very common in Opportunis-
tic Grid Computing. Also, using checkpointing, the BSP
parallel applications can use a larger, or smaller number of
processors, expanding or shrinking dynamically, adapting to
the Grid resource availability.

In this paper, we discuss the implementation of the BSP
model on top of the InteGrade grid middleware, using its
distributed scheduling and allocation services. The struc-
ture of the paper is as follows. Section 2 discusses support
for parallel applications in other grid platforms and Section 3
describes the major concepts behind BSP and BSPlib. Sec-
tion 4 presents a brief description of the InteGrade system
and architecture. Section 5 focuses on our implementation
of the BSP model. We present our conclusions in Section 6.

2. RELATED WORK
Supporting parallel applications on heterogeneous environ-
ments, such as grid systems, is not trivial. Many issues
have to be addressed, such as communication overhead, fault
tolerance, parallel computing support, legacy compatibility,
checkpointing, job migration and synchronization, and so
forth.

Some grid systems already provide support for parallel ap-
plications. Grid systems such as Legion (www.cs.virginia.



edu/~legion) and Condor (www.cs.wisc.edu/condor) sup-
port the MPI and PVM parallel programming models.

Legion supports MPI and PVM parallel applications via em-
ulation libraries that use Legion’s run-time library. Existing
applications only need to be recompiled and re-linked to run
on Legion. Therefore, issues such as checkpointing and job
migration are treated by emulation libraries.

Condor provides a framework for running PVM applications
in its environment, the Condor-PVM. It does not define a
new API, instead programs use the existing resource man-
agement PVM calls. Regular PVM and Condor-PVM are
binary compatible. The same binary, which runs under reg-
ular PVM, also runs under Condor, and vice-versa. There
is no need for re-linking for Condor-PVM, thus, application
development is easier.

Condor supports MPI through MPICH. A problem is that
machines running MPI jobs must be dedicated [22], which
means that once they begin the execution of a program,
they will continue executing the program until the program
ends, which is a problem for environments where dedicated
resources are not available.

Globus (http://www.globus.org), a toolkit that provides
services for grid applications, supports MPI through MPICH-
G2, a customized MPI implementation for grid applications.
MPI applications can run under MPICH-G2 without changes.
MPICH-G2 uses services provided by the Globus Toolkit to
coordinate and manage work on multiple computer systems,
automatically convert data in messages sent between ma-
chines of different architectures, and support multi-protocol
communication. Recently, Globus also provided a BSP im-
plementation, BSP-G [20]. Although the BSP model has
the cleanest and simplest programming model, among the
systems above, only for Globus there is an implementation.

To the best of our knowledge, the work described in this
paper is the first implementation of BSP to run on an op-
portunistic grid middleware. Our BSP implementation is
open-source and it benefits from support for checkpointing
and security available in our middleware.

3. THE BSP COMPUTING MODEL
The Bulk Synchronous Parallel model (BSP) [21] was intro-
duced by Leslie Valiant, as a bridging model, linking archi-
tecture and software. BSP offers both a powerful abstraction
for computer architects and compiler writers, and a concise
model of parallel program execution, enabling accurate per-
formance prediction for proactive application design.

A BSP abstract computer consists of a collection of virtual
processors, each with local memory, connected by an inter-
connection network whose only properties of interest are the
time to do a barrier synchronization and the rate at which
continuous randomly addressed data can be delivered. A
BSP computation consists of a sequence of parallel super-
steps, where each superstep is composed of computation and
communication, followed by a barrier of synchronization.

The BSP model is compatible with the conventional SPMD
/ MPMD (single/multiple program, multiple data) model,

and is at least as flexible as MPI, having both remote mem-
ory (DRMA) and message-passing (BSMP) capabilities. The
timing of communication operations, however, is different
since the effects of BSP communication operations do not
become effective until the next superstep.

The postponing of communications to the end of a superstep
is the key idea for implementations of the BSP model. It
removes the need to support non-barrier synchronizations
between processes and guarantees that processes within a
superstep are mutually independent. This makes BSP eas-
ier to implement on different architectures and makes BSP
programs easier to write and to analyze mathematically. For
example, since the timing of BSP communications makes
circular data dependencies between BSP processes impos-
sible, there is no risk of deadlocks or livelocks in a BSP
program. Also, the separation of the computation, commu-
nication, and synchronization phases allows one to compute
time bounds and predict performance using relatively simple
mathematical equations [16].

Moreover, there are plenty of algorithms developed for CGM
(Coarse Grained Multicomputer Model) [4], which has the
same principles of BSP and can be easily ported to BSP.

Several implementations of the BSP model have been devel-
oped since the initial proposal by Valiant. They provide to
the users full control over communication and synchroniza-
tion in their applications. Existing BSP implementations
for local area networks include: Oxford’s BSPlib [10] (1993),
JBSP [9] (1999): a Java version, and PUB [2] (1999).

3.1 BSP and Grid Computing
Although not yet common, the use of the BSP model for
Grid Computing on non dedicated resources fits very well
with two fundamental characteristics of such environments:
dynamism and heterogeneity. In both cases, the BSP model
brings optimization opportunities, which are not straight-
forward in other models such as MPI.

The available resources in a Grid change frequently. Using
the BSP model, it is possible to deal with this dynamism by
using checkpointing in the synchronization points, avoiding
the loss of computation when one or more machines being
used by a BSP parallel application becomes unavailable. It
is also possible to deal with resource availability fluctuations
by shrinking or expanding the BSP parallel application, in
the synchronization points [8]. This can be done, transpar-
ently to the application, by placing more than one of the
BSP processes of an application in the same machine. That
is, a BSP application with n processes can be executed on n

k

to n machines, where the maximum value for k is determined
considering primarily memory limitations.

The BSP model also helps with regard to the heterogeneity
of processing speeds among Grid nodes. In a heterogeneous
environment, the time of a superstep is determined by the
slowest processor; thus, a processor allocation scheme where
the processes with larger computing times go to the faster
machines can be used. Finally, as the communications are
done at the end of the supersteps, it is easier to find commu-
nication patterns and exploit this information to implement
optimized Grid-aware scheduling in wide-area networks [7].
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Figure 1: InteGrade Intra-Cluster Architecture

4. INTEGRADE ARCHITECTURE
InteGrade features an Object-Oriented architecture and is
built using the CORBA [15] industry standard for distributed
objects. InteGrade also strives to ensure that users who
share the idle portions of their resources in the Grid shall not
perceive any loss in the quality of service provided by their
applications. To achieve this goal, the software that runs on
resource providing workstations use OiL [3], a lightweight
CORBA implementation. We are also working towards us-
ing a user level scheduler (DSRT) [14] to provide QoS guar-
antees for users of resource provider nodes.

The basic architectural unit of an InteGrade grid is the
cluster. A cluster contains a number of machines, which
typically varies from 1 to about 100. Clusters are natu-
rally mapped to LANs, although this is not required. Clus-
ters are then organized into a hierarchy which can poten-
tially encompass millions of machines. This hierarchy can
be organized in any convenient fashion, as there is no pre-
determined model. This overall architecture was proposed
in the 2K Operating System [12] and was slightly modified
to suit InteGrade’s needs.

Figure 1 depicts the major components in an InteGrade clus-
ter. The Cluster Manager is composed of one or more nodes
that are responsible for managing that cluster and commu-
nicating with managers in other clusters. A Grid User Node
is one belonging to a user who submits applications to the
Grid. A Resource Provider Node, typically a PC or a work-
station in a shared laboratory, is one that exports part of its
resources, making them available to grid users. A Dedicated
Node is one reserved for grid computation. Note that these
categories may overlap: for example, a node can be a Grid
User Node and a Resource Provider Node at the same time.

The Local Resource Manager (LRM) and the Global Re-
source Manager (GRM) cooperatively handle intra-cluster
resource management. The LRM is executed in each cluster
node, collecting information about the node status, such as
memory, CPU, disk, and network utilization. LRMs send
this information periodically to the GRM, which uses it for
scheduling within the cluster. This process is called the In-
formation Update Protocol.

The GRM and LRMs also collaborate in the Resource Reser-
vation and Execution Protocol, which works as follows. When
a grid user submits an application for execution, the GRM

selects candidate nodes for execution, based on resource
availability and application requirements. For that end the
GRM uses its local information about the cluster state as a
hint for locating the best nodes to execute an application.
After that, the GRM engages in a direct negotiation with
the selected nodes to ensure that they actually have the suf-
ficient resources to execute the application at that moment
and, if possible, reserves the resources in the target nodes.
In case the resources are not available in a certain node, the
GRM selects another candidate node and repeats the pro-
cess. The GRM is also responsible for communication with
other clusters.

Similarly to the LRM/GRM cooperation, the Local Usage
Pattern Analyzer (LUPA) and the Global Usage Pattern
Analyzer (GUPA) handle intra-cluster usage pattern col-
lection and analysis. The Node Control Center (NCC),
which is still under construction, will allow the owners of re-
source providing machines to set the conditions for resource
sharing, if they so wish. The Application Submission and
Control Tool (ASCT) allows InteGrade users to submit grid
applications for execution by using a graphical interface.

5. BSP OVER INTEGRADE
One of the objectives of the InteGrade BSP implementa-
tion is to allow existing applications written for the Oxford
BSPlib to be executed over InteGrade with little or even no
modifications. Thus, we strictly adhere to the API defined
by the Oxford implementation targeted for the C language.
The task of converting an existing BSPlib application to
execute over InteGrade consists only of recompiling and re-
linking the application with the appropriate InteGrade li-
braries. This is a considerable advantage for programmers,
since they will be able to execute existing applications over
resources controlled by InteGrade without the cost of port-
ing the applications.

Another important design decision was not to overload the
core InteGrade interfaces with methods related to BSP. As
InteGrade is a system under continuous development, we
consider important to keep the core interfaces small, describ-
ing only the essential functionality. All BSP related meth-
ods, including the internals of our implementation, are kept
in a separate module with its own IDL interfaces. For ex-
ample, the scheduling system remains unchanged even with
the addition of parallel applications.

Our BSP implementation uses CORBA internally for inter-
task communication. CORBA gives us the advantages of an
easier and cleaner communication environment, shortening
development and maintenance time and facilitating system
evolution. The use of CORBA is transparent to the user
who only uses the traditional BSP interface.

Initially, we were worried that the use of CORBA for data
exchange could bring a significant performance penalty when
compared to an implementation based on raw sockets. But,
experimental results demonstrated that the overhead im-
posed by CORBA was relatively small and the benefits in
flexibility and ease of development showed that the choice
of CORBA was correct. It is also important to note that
CORBA’s IIOP is about 10 times faster than SOAP, the
XML-based protocol widely used in Web Services.



Since the InteGrade project’s goal is to benefit from oth-
erwise wasted computing resources, at the moment we are
satisfied with the system’s performance. In the future, how-
ever, it would be possible to replace the use of CORBA
with lower level mechanisms such as raw sockets; in this
case, our experiments show that we could expect perfor-
mance improvements in the order of 15%.

5.1 The Implementation
As mentioned before, the Oxford BSPlib has two means of
inter-task communication. Direct Remote Memory Access
(DRMA), which allows a task to read from and write to the
remote address space of another task, and Bulk Synchronous
Message Passing (BSMP), that implements message passing
communication between tasks. We have currently imple-
mented the most important functions DRMA and BSMP,
the initialization routine (which is mandatory for all BSP
programs), the barrier synchronization, and some simple en-
quiry methods. The following functions were implemented:

bsp begin bsp sync

bsp pushregister bsp pid

bsp popregister bsp nprocs

bsp put bsp send

bsp get bsp move

In our implementation, each of the component tasks of a
parallel application has an associated BspProxy. The Bsp-
Proxy is a CORBA servant responsible for receiving BSP
related communication for a given task. The proxy contains
methods corresponding to functions defined in the BSP API,
such as bsp put, and also contains methods that are inter-
nal to our implementation. The creation of BspProxies is
entirely handled by the library and is totally transparent to
library users. The library also creates a StubPool, which
is responsible for the instantiation of client stubs to access
the proxies of other BSP tasks. As each of the tasks of a
given application may communicate with all other tasks, the
pool organization of these stubs allows us to save memory
by sharing only one copy of OiL ORB1.

BSP parallel applications need means to initialize the exe-
cution, spawn additional tasks, and manage synchronization
barriers. In our implementation, the BSP parallel applica-
tions need coordination to perform some initialization tasks,
such as attributing unique process identifiers to each of the
application tasks, and broadcasting the IORs to each of the
tasks to allow them to communicate directly among them-
selves. The synchronization barriers also requires central
coordination. We decided to build those functionalities di-
rectly into the library: one of the application tasks, called
Processor Zero, is responsible for performing the aforemen-
tioned tasks.

Parallel applications are registered in the same way as se-
quential ones. To execute a registered parallel application
on the Grid, the user must use the ASCT graphical inter-
face to send a request to the GRM. This request is iden-
tical to the one sent when executing a sequential appli-
cation. The ASCT silently adds a configuration filename,
1OiL, our CORBA ORB, is written in Lua [11] and is loaded
by the Lua runtime in the beginning of the application.

bspExecution.conf, to the list of the application input files.
This filename is not used by the GRM, which simply for-
wards it to the LRMs which will host each of the parallel ap-
plication processes. bspExecution.conf contains the num-
ber of application nodes, the application ID as attributed by
the ASCT, and the IOR of the ASCT, which will be used
to determine which task will be Processor Zero. When a re-
quest reaches the LRM, it downloads the configuration file
from the ASCT.

The bsp begin method determines the beginning of the par-
allel section of a BSP application. Applications are exe-
cuted in the following way: when the method bsp begin

is reached, each launched task contacts the ASCT (with
the call registerBspNode); the first one to complete the
operation is elected Processor Zero. All other tasks re-
ceive Processor Zero reference. After receiving the reference,
each task contacts Processor Zero sending its IOR (with the
call registerRemoteIor). When Processor Zero receives all
IORs, it sends to each task its processor identification (from
1 to the number of tasks minus 1), and broadcasts all the
received IORs, to allow direct communication among tasks.

When bsp begin is completed, each of the processes has a
BSP PID and the IORs of all other processes, which are used
to instantiate stubs for remote communication. The commu-
nication between tasks are performed through BspProxies
and StubPools, as CORBA remote method invocations.

When the DRMA methods are used, before reading or writ-
ing a remote memory position (with bsp get or bsp put),
it is necessary to register the position. The registration en-
sures that the physical memory addresses of a given variable,
which are different on each task, are mapped to a logical ad-
dress, which is the same across all tasks. This is done with
the methods bsp pushregister and bsp popregister. The
correspondence between the logical and physical addresses
are stored in a stack in each task.

As previously described in Section 3, computation in the
BSP model is composed of supersteps, and each of them
is finished with a synchronization barrier. Operations such
as bsp put and bsp pushregister only become effective at
the end of the superstep. bsp synch is the method respon-
sible for establishing synchronization. In our implementa-
tion, it works as follows: when a task calls bsp synch (in-
cluding Process Zero), it sends a synch message to Process
Zero and then stops executing. When Process Zero re-
ceives synch messages from all other processes, it broadcasts
a synch done message to the other processes, which then
can process all pending operations, in the following order:
bsp get; bsp put; bsp pushregister; bsp popregister; and
bsp move.

5.2 Experiments
To evaluate the performance of our library, we implemented
two simple applications. First, Multiple Matrix multipli-
cations, where the algorithm used is based on the systolic
approach [17]. Second, DNA sequence alignment, where the
amount of communication among tasks is small; for a prob-
lem of size n, the computation is O(n2) and the communi-
cation is O(n). We compared the performance of the algo-
rithms on a local network of heterogeneous PCs, running the



same algorithm written in MPI (using a highly-optimized
implementation: MPI LAM 7.1.1 [13]) and in BSP over
InteGrade. For these experiments we used only dedicated
machines.

We carried out experiments for 1, 4, 9, and 16 computers.
In the matrix multiplication experiment, the BSP CORBA
implementation was surprisingly even faster than the MPI
one for 4 and 9 computers (e.g., to multiply matrices of size
1500 by 1500, BSP took 1015.2s while MPI took 1180.5s).
However, with 16 processors the MPI implementation was
always faster (e.g., it solved the problem in half of the time
of BSP for matrices of 600 size by 600). For the sequence
alignment program, we obtained similar results, with MPI
being a little faster than the BSP version. For this program,
however, the difference in performance was at most 11% (the
larger difference was for 10 computers with sequences of size
480,000 where BSP took 111.4s and MPI took 100.7s).

MPI performance was better in problems with smaller gran-
ularity and presented more stable speed-up. In some cases,
the BSP results showed a tendency to loose performance
with the increase in the number of machines. This shows
that when one programs for this model it is important to
pay good attention to the balance between computation and
communication.

6. CONCLUSIONS
In this paper, we described the implementation of the sup-
port for BSP applications in the InteGrade middleware in-
frastructure for Grid Computing. Thanks to the object-
oriented architecture of InteGrade and its use of an elegant
and mature distributed object model (CORBA), the imple-
mentation of the extra functionality was relatively easy. We
also verified that even if performance was not one of our
main objectives it was possible to obtain some performance
results close to the MPI implementation. So, the overhead
added by the middleware and the CORBA communication
were not so relevant.

InteGrade is available for download as open-source software
from http://incubadora.fapesp.br/projects/integrade.
Documentation and more information is available from the
project main site (http://gsd.ime.usp.br/integrade). We
would like to encourage researchers and software developers
from other institutions both to use InteGrade in new appli-
cations and environments and to help extending the middle-
ware, providing new functionalities.
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