AUTOMATIC CONFIGURATION OF
COMPONENT-BASED DISTRIBUTED SYSTEMS

BY

FABIO KON

B.S., University of Sao Paulo, 1991
M.S., University of Sao Paulo, 1994

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

Abstract

Recent developments in component technology enable the construction of complex software systems
by assembling off-the-shelf components. However, it is still difficult to develop efficient, reliable, and
dynamically configurable component-based systems. Components are often developed by different
groups with different methodologies. Unspecified dependencies and behavior lead to unexpected
failures.

This thesis demonstrates that the explicit representation of inter-component dependence is fun-
damental for the development of efficient, configurable, and reliable component-based systems. This
provides a common ground for supporting fault-tolerance and automating dynamic configuration
to facilitate system management and maintenance.

In this thesis, we present a generic architecture for managing dependencies in distributed com-
ponent systems, describe a concrete implementation of this architecture, and discuss how it can
be used to support automatic configuration. The architecture is divided in three parts: the Auto-
matic Configuration Service, the component configurator framework, and the reconfiguration agents
framework.

We describe the deployment of the architecture in centralized and distributed systems and

present detailed experimental results.

iii

iv

To Paula

Acknowledgments

I would like to thank my advisor, Prof. Roy Campbell, for having always believed in my work
and for providing insightful feedback during all the stages of the research described in this thesis.
His vision was fundamental in shaping my research and I am very grateful for having had the
opportunity to learn from him.

The students at the Systems Research Lab provided a precious collaborative working environ-
ment that will be hard to forget. To save trees, I must not list the names of all the DCL people
that contributed to my work. Such list would certainly include Manuel Roman, Christopher Hess,
Dulcineia Carvalho, Tomonori Yamane, Prasad Naldurg, Vijay Gupta, Luiz Claudio Magalhaes,
Ashish Singhai, Miguel Valdez, Chuck Thompson, Mario Medina, Marcia Munoz, and others from
the SRG, 2K, and Vosaic teams. Anda Ohlsson and Bonnie Howard made my life at the department
much easier.

The members of my thesis committee, Professors Geneva Belford, Klara Nahrstedt, and Dennis
Mickunas provided valuable feedback at different phases of my research.

Prof. Francisco Ballesteros was always so readily available to help me with everything I needed
that I often forgot that we were separated by 6886 Kms. Alexandre Oliva provided a safe environ-
ment for my reconfiguration agents at the University of Campinas. Prof. Dilma Menezes shared
with me some of her inspiring ideas and was brave enough to actually use my code.

Paula was the best person in the world I could have had to share all the good and bad moments
of my PhD. I was very lucky to have found her. Last but not least, I would like to thank my
parents, ZecAnita, my siblings, LeNeRu, and all my family for their great emotional support over

all these years, and Larry and family, who made us feel more at home in these distant lands.

Table of Contents

Abstract e e e e iii
Acknowledgments v
Table of Contents e vi
List of Tables o L o e ix
List of Figures o L e X
List of Abbreviations L. xii
Chapter 1 Introduction ¢ @ i i i i i i i i i i bttt ettt e ot ot e 1
1.1 The Heart of the Problem 3
1.2 Thesis Contribution e e 3
1.3 Thesis Contents e 4
Chapter 2 Dependence Managementt v i it 5
2.1 Automatic Configuration. L. oL 5
2.2 Dynamic Reconfiguration L 7
2.3 Fault-Tolerance e e e 8
2.4 Adaptation e e 9
Chapter 3 Overall Architecture ittt ieeenene. 11
3.1 TheBigPicture. e 11
3.2 Automatic Configuration. L oL 12
3.2.1 Prerequisites e 14

3.3 Component Configurator L 15
3.4 Reconfiguration and Inspection Agents L. 17
Chapter 4 Automatic Configuration Service v v v i vt vttt v v oo 19
4.1 A Flexible Framework e 19
4.2 A Concrete Implementation 21
4.2.1 SPDF . . . e 21

4.2.2 Simple Resolver and Caching Resolver 22

4.3 Interactions with Resource Management Services 22
4.4 Use Cases v v i i 23
Chapter 5 Component Configurators 00000 ... 24
5.1 Separation of Concerns L e 24
5.2 Implementation e e e 25
5.21 CH4 . o 26

B5.2.2 Java e e e e e e 28

vi

5.2.3 CORBA 30

5.3 Customization e e e e e e 32
5.3.1 An Application-Specific Customization 32
5.3.2 Locking Configurator L 33
5.3.3 Dependency Attributes 34
5.3.4 Supporting Consistent Dynamic Reconfiguration 35

54 Use Cases v v v vt e 36

Chapter 6 Reconfiguration Agents 38

6.1 Implementation L 39
6.1.1 Java Agents e 42

6.2 Security 43

6.3 Fault-Tolerance and Consistency 43

Chapter 7 Application Scenarios. ¢ i i i it it i i ittt e 46

7.1 dynamicTAO« . . e e 46
7.1.1 A Reflective ORB e 47
7.1.2 Reconfiguration Interfaces oL 50
7.1.3 Consistency e e 53
7.1.4 dynamicTAO and this Thesis 54

7.2 Scalable Multimedia Distribution o0 0o 55
7.2.1 The Reflector e 55
7.2.2 Data Distribution Protocolso oo 56
7.2.3 Experience and Lessons Learned 58
7.2.4 Dynamic Configuration of QoS-Sensitive Systems 59

7.3 Other Applications 67

Chapter 8 Experimental Results 0000000000, 69

8.1 Automatic Configuration Service 69
8.1.1 Loading Multiple Components 69
8.1.2 Loading Components of Different Sizes 71

8.2 Dynamic Reconfiguration Using Component Configurators 73

8.3 Mobile Agents for Reconfiguration, Inspection, and
Code Distribution e 78

Chapter 9 Related Work i it 83

9.1 Programming Models. L 83
9.1.1 Reflective Programming 83
9.1.2 Aspect-Oriented Programming 85

9.2 Component Architectures 85
9.2.1 Enterprise Java Beansand Jini 85
9.2.2 CORBA Component Model (CCM) 86
9.2.3 ActiveX Controls, COM, and DCOM 87
9.24 OpenDoc and OpenStep e 87

9.3 Prerequisites 87
9.3.1 Job Control Languages e 87
9.3.2 SOS . . . e 88
9.3.3 Dynamically Loadable Libraries. 88

vii

9.3.4 Globusand RSL e 88

9.4 WYNIWYG in Operating Systems 89
9.4.1 Customizable Operating Systems 89

9.4.2 Microkernels e e 90

9.4.3 Exokernels e 90

9.4.4 Comparison with our Approach 91

9.5 Software Architecture 92
9.5.1 Software Buses 92

9.5.2 Architectural-Awareness e 94

9.5.3 Architectural Description Languages 94

9.5.4 Comparison with our Approach 96

9.6 Dynamic Configuration e 97
9.7 Application Scenarioso 99
9.7.1 Multimedia Distribution System 99

9.7.2 dynamicTAO e e 100
Chapter 10 Future Work i i i i i i i i i i ittt ittt e e e e 103
10.1 Libraries of Customized Component Configurators 103
10.2 Automatic Prerequisite Generation and Verification 104
10.3 Dynamic Adaptability L 104
10.4 Integration with ADLs e 105
10.5 Component Repository L 105
10.6 Security e e e 105
10.7 CONCUITENCY + « « v v v o e e et e e e e e e e e e e e e e e 106
Chapter 11 Conclusions v v v i v i i i it it ittt et s e e et e 107
11.1 Original Contributions e 107
11.2 Perspectives L L e 108
References o o v i i i i i i e e e e e e e e e e e e e e e e e e e 109
Vita . v e 127
Index . . v v v i it e 128

viii

List of Tables

8.1 Discriminated Times for Loading a 19.2Kbyte Component
8.2 Average Bandwidth and Latency from cs.uiuc.edu
8.3 Elapsed Time (in ms) for the Execution of Five Different Inspection Commands

ix

List of Figures

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Overall Architecture for Dynamic Configuration 12
Relationships e 13
Reification of Component Dependencies 16
Automatic Configuration Architecture 20
A Simple Prerequisite Description L Lo 21
The ComponentConfigurator C++ Base Class 26
Methods for Specifying Dependencies and Sending Events 27
The ComponentConfigurator Java Interface 29
The Configuration Module IDL interface 31
Customization of the eventFromHookedComponent Method 33
The ComponentConfiguratorAttrib Interface Supporting Attributes 35
The dynamicTAO ConfigAgentBuilder Interface 40
Sending and Receiving Agentso 41
The Doctor Configuration Tool 44
Reifying the dynamicTAO Structure 48
dynamicTAO Components v v v v i e e e e 49
The DynamicConfigurator Interface 51
Inspecting the ORB Internal State 53
A Reflector Network Distributing Two Video Streams 56
A Heterogeneous Reflector Network 57
Bootstrapping a Reflector L 60
A Sample Screen Shot of the Name Service GUI 62
A Distribution Network with Five Reflectors 66
The Distribution Network After Reflector C Abandons the Network 66
Automatic Configuration Service Performance 70
Times for Loading Components of Different Sizes 71
Discriminated Times for Loading Components of Different Sizes 72
Discriminated Percentual Times for Loading Components of Different Sizes 72
Reconfiguration Experiment Testbed L. 74
Reconfiguration when Reflector B Goes Down L. 74
No Reconfigurations. Bandwidth = 1.2Mbps, Packet Rate = 30pps 74
Reflector Reconfigurations. Bandwidth = 1.2Mbps, Packet Rate = 30pps 75
Reflector Reconfigurations. Bandwidth = 1.2Mbps, Packet Rate = 30pps 77

8.10 High Network and CPU Load. Bandwidth = 1.2Mbps, Packet Rate = 30pps 77

8.11 Reflector Reconfigurations. Vat Bandwidth = 45kbps, Packet Rate = 25pps 78
8.12 Agent Distribution Topology 80
8.13 Agent Uploading a New Component to Nine Nodes 81
8.14 Reconfiguration Agent Visiting Nine Nodes 82
8.15 Agents Versus Conventional Client/Server 82

X1

List of Abbreviations

ACE Adaptive Communication Environment

CORBA Common Object Request Broker Architecture
DCOM Distributed Component Object Model

DCP Distributed Configuration Protocol

Doctor Distributed ORB Configuration Tool

DSRT Dynamic Soft Real-Time Scheduler

OMG Object Management Group

ORB Object Request Broker

PDA Personal Digital Assistant

RMI Remote Method Invocation

SPDF Simple Prerequisite Description Format

xii

Chapter 1

Introduction

There is nothing permanent except change.

Heraclitus of Ephesus (535-475 BC)

As computer systems are being applied to more and more aspects of personal and professional
life, the quantity and complexity of software systems is increasing considerably. At the same time,
the diversity in hardware architectures remains large and is likely to grow with the deployment of
embedded systems, PDAs, and portable computing devices. All these architectures will coexist with
personal computers, workstations, computing servers, and supercomputers. It is imperative that the
scientific and industrial communities develop techniques to support seamless integration of highly
heterogeneous environments. The construction of these new software systems and applications in
an easy and reliable way can only be achieved through the composition of modular hardware and
software.

Component technology has appeared as a powerful tool to confront this challenge. Recently
developed component architectures support the construction of sophisticated systems by assem-
bling together a collection of off-the-shelf software components with the help of visual tools or
programmatic interfaces. Components will be the unit of packaging, distribution, and deployment
in the next generation of software systems. However, there is still very little support for managing
the dependencies among components. Components are created by different programmers, often
working in different groups with different methodologies. It is hard to create robust and efficient

systems if the dependencies between components are not well understood.

Mobile computing and active spaces seem to be among the next revolutions in information

technology. Mobile computing comprises systems as diverse as digital cellular telephony, road
traffic information, or simply web browsing via wireless connections. Active spaces consist of
physical spaces — such as offices, lecture and meeting rooms, homes, hospitals, campuses, train
stations, cities — that are augmented with computing devices integrated into the environment. The
objective of these devices is to provide information to users of the space, helping them to perform
activities they would not be able to perform otherwise, or helping them to perform conventional
activities more easily. In addition, multimedia interfaces will play a fundamental role in human-
computer interaction. Applications will gradually abandon dull interfaces based on text and static
graphics and move towards interfaces with a more dynamic appearance based on audio, video, and
animations. We can also expect the migration of services such as radio and TV to the personal
computer. Within one decade, there will probably be no distinction among the telephone, radio, TV,
and data networks. In the future, there will be no distinction between computer and dedicated radio
and TV receivers. Everything will be integrated into an extension of today’s Internet. The dynamic
nature of multimedia, with its stringent, time-sensitive resource requirements, will contribute to
the changes towards more dynamic computing environments.

Until recently, these highly-dynamic environments with mobile computers, active spaces, and
ubiquitous multimedia were only present in science fiction stories or in the minds of visionary
scientists like Mark Weiser [Wei92, WSAT95]. But now, they are becoming a reality and one of the
most important challenges they pose is the proper management of dynamism. Future computer
systems must be able to configure themselves dynamically, adapting to the environment in which
they are executing. Furthermore, they must be able to react to changes in the environment by
dynamically reconfiguring themselves to keep functioning with good performance, irrespective of
modifications in the environment. Applications and systems must react to variations in resource
availability by dynamically adapting their algorithms, updating parts of the system, and replacing
software components when needed.

Unfortunately, the existing software infrastructure is not prepared to manage these highly-
dynamic environments properly. Conventional operating systems already have a hard time manag-
ing static environments based on components. Even Microsoft researchers say that they are “well

aware of how difficult it is to install software on [Windows] NT and get it to work” [MB™99] because

of the management problems that components induce. In Solaris, a system administrator does not
have a clean way of upgrading software that is being executed by the users. When an executable

is replaced, the running versions of the old executable crash.

1.1 The Heart of the Problem

Existing software systems face significant problems with reliability, administration, architectural
organization, and configuration. The problem behind all these difficulties is the lack of a unified
model for representing dependencies among system and application components and mechanisms
for dealing with these dependencies.

As systems become more complex and grow in scale, and as environments become more dynamic,
the effects of the lack of proper dependence management become more dramatic. Therefore, we
need an integrated approach in which operating systems, middleware, and applications collaborate

to manage the components in complex software systems, dealing with their dependencies properly.

1.2 Thesis Contribution

To solve the problem described in the previous section, this thesis introduces an architecture that
provides support for systems and applications to reason about their own internal structural or-
ganization. We call this ability architectural-awareness and we achieve it with a framework that
supports the explicit representation of dependencies in component-based systems. This representa-
tion can then be manipulated in order to implement software components that are able to configure
themselves and adapt to ever changing dynamic environments.

By reifying the interactions between system and application components, system software can
recognize the need for reconfiguration to provide better support for fault-tolerance, security, quality
of service, and optimizations. In addition, it gains the means to carry out this reconfiguration
without compromising system stability and reliability, with minimal impact on performance.

Our research builds on previous and ongoing work on software architecture and dynamic con-
figuration of distributed systems. But, rather than simply looking at the architectural connections

among the components of a single application, our approach differs from previous work in this

area by reasoning about all the different kinds of dependencies that relate each component to
other application, middleware, and system components. In addition, instead of relying on archi-
tecture descriptions defined a priori, our framework is prepared to deal with completely dynamic
architectures that are only known at runtime.

In this thesis, we present a generic architecture for dependence representation and management
and describe a concrete implementation of this architecture. The latter was deployed successfully
in several distributed systems and in a centralized system. This demonstrates the effectiveness
of our approach in improving the quality of component-based systems with respect to dynamic

configuration, reliability, architectural organization, and management.

1.3 Thesis Contents

The remainder of this thesis is organized as follows. Chapter 2 discusses how dependence manage-
ment in component-based distributed systems can help to provide reliability, quality of service, and
dynamic configuration and reconfiguration.

Chapter 3 gives a general overview of our novel architecture for dependence management. The
architecture is divided in three parts that are addressed in more detail by the three subsequent chap-
ters. Chapter 4 describes the Automatic Configuration Service, Chapter 5 describes the component
configurator framework, and Chapter 6 describes the reconfiguration agents framework.

Chapter 7 describes, in detail, two application scenarios where our architecture was deployed.
Section 7.1 describes the dynamicTAO reflective ORB and Section 7.2 describes a scalable multi-
media distribution system. Section 7.3 describes briefly three other ongoing projects that use the
results of this thesis.

Chapter 8 presents the results of experiments with the three major parts of our architecture. It
discusses the performance, impact, and overhead of dependence management in different contexts.

Chapter 9 describes related research in different Computer Science fields, discusses their limi-
tations, and shows how they compare to the novel ideas introduced in this thesis.

Finally, Chapter 10 discusses several possibilities for extending this work in the future and

Chapter 11 presents our conclusions, emphasizing this thesis’s original contributions.

Chapter 2

Dependence Management

Before going into the details about how our architecture works, we present an overview of the issues
related to dependence management. We discuss how the reification of dependence relationships can

help support automatic configuration, dynamic reconfiguration, fault-tolerance, and adaptation.

2.1 Automatic Configuration

Users of modern computing environments have to deal with many different devices, ranging from
PDAs and embedded systems to powerful workstations and servers. These devices are managed
by different operating systems and depend on different interfaces for configuration. As a result,
users are overwhelmed with the huge amount of manual configuration that these systems require.
In recent years, many of us have had to learn to deal with poorly configured systems, looking for
“work-arounds”, just because it is too costly to configure them properly.

In spite of the increasing need for self-configuring systems, not enough research has been carried

out in this field. We identify a few trends in this area.

1. Systems such as MS-Windows provide graphical “wizard” interfaces that help configuring
applications and services as they are installed. However, since dependence management is
not addressed, it is very common to experience errors in wizard operations, requiring manual

intervention from users and system administrators.

2. Operating systems such as Linux, rely on a tool called GNU Autoconf [ME98] to detect
the characteristics of the underlying hardware and software platforms and automate the

configuration of new applications and services at compile-time. Autoconf is used in a large

number of free software packages that are designed to run on a wide variety of platforms.
Obviously, the level of automatic configuration provided by such tools is very limited since it

is restricted to compile-time configuration.

. The Debian Linux operating system [Deb00] includes dpkg, a package maintenance utility
that manages the dependencies between the executables, libraries, documentation, and data
files associated with Debian software packages. It maintains databases of dependencies that
let users install, update, and delete packages without compromising consistency. Even when
libraries are shared by multiple packages, dpkg is able to manage them consistently. New

packages can be read from a local CD or fetched from a remote FTP site.

To support the update of software packages that are being executed at the time of the update,
the utility renames the files related to the running version and installs the update using the
package official file names. Then, the next time the package is restarted, the updated version is
executed. This mechanism allows, for example, system administrators to update the network

packages using FTP (a client of the network packages).

. Jini [Wal98] provides simple mechanisms for enabling plug-and-play Java services and facil-
itating configuration. Jini does not address management of component-based applications
and inter-component dependence. It does not provide a model for specifying hardware and

software requirements.

. Academic research in automatic configuration has addressed this problem within the realm
of software architecture and Architectural Description Languages (ADLs). ADLs such as
Darwin [MDK94, MTK97] and UniCon [SDZ96] specify application architecture as a collection
of modules linked by bindings and connectors, respectively. At application startup time,
the underlying system processes the application architectural description, instantiates the

required components, and establishes the links among them.

ADL descriptions are limited to the internal architecture of a particular application or service.
They usually do not represent the interactions between the application and the underlying
system and the interactions among applications. In addition, this approach requires pre-

defined, fixed architectural descriptions and does not work well in dynamic environments

where the architecture is not known until runtime. We present a more detailed description

of related work in software architecture and ADLs in Section 9.5.

Although we recognize the importance of the existing software tools and previous research
results in software architecture, we are convinced that they are not enough to provide a definitive
solution to the problem of automating configuration.

What is missing is a model that lets each system and application component specify its depen-
dencies with respect to other components, applications, system services, and hardware resources.
With such an explicit representation of dependencies, it becomes possible to implement services

that support automatic configuration.

2.2 Dynamic Reconfiguration

Besides helping to establish the initial configuration automatically, proper dependence management
also helps support dynamic reconfiguration of running applications and services. The importance
of dynamic reconfiguration can be understood by considering the rapid proliferation of the Internet
and the recent evolution of its supporting software.

The scope of Internet services continues to expand. It stretches to new fields, reaches increasing
numbers of people, and encompasses more and more human activities in the virtual world of the
World Wide Web. Different forms of electronic commerce ranging from airline ticket reservation
to pizza delivery are now commonly available. Activities such as management of bank accounts,
reading news, accessing financial information, filing income taxes, submitting articles and registering
for scientific conferences, getting weather and natural disaster information, and consolidating votes
in presidential elections or referenda stress the importance of service availability, reliability, and
security. However, the rapid evolution of software requires frequent code updates and highly-
dynamic environments require reconfiguration of system parameters. Maintaining the flexibility
and rapid growth of these systems while ensuring the service requirements on such a scale as the
Internet is a difficult problem.

Services must grow to meet increasing usage, new requirements, and new applications. However,

flexibility usually conflicts with availability. In conventional systems, the service provider must often

shut down, reconfigure, and restart the service to update or reconfigure it. In many cases, it is
unacceptable to disrupt the services for any period of time. Disruption may result in business loss,
as in the case of electronic commerce, or it may put lives in danger, as in the case of mission critical
systems delivering disaster information. Research in dynamic reconfiguration [Kra90, HWP93,
End94, MTK97, BBB1T98, BISZ98, OT98, SW98, PCS98, MG99] seeks solutions to this problem.

By breaking a complex system into smaller components and by allowing the dynamic replace-
ment and reconfiguration of individual components with minimal disruption of system execution,
it is possible to combine high degrees of flexibility and availability.

As pointed out by Goudarzi in [MG99], dynamic reconfiguration involves three basic issues:
specification and management of change, preservation of system consistency, and minimization of
disruption to the provided service.

Previous approaches to dynamic reconfiguration are based on reconfiguration scripts that must
have some knowledge about the application architecture. However, as mentioned before, if the
architecture of the system being reconfigured is not known until runtime, then an approach that
requires a priori knowledge of the global system architecture is not appropriate.

Instead of dealing with global architectures, our approach focuses on inter-component depen-
dencies and lets users, system administrators, and programs to replace components and reconfigure
architectures at runtime.

The mechanisms for dependence management presented in Chapter 3 provide the necessary
support for software developers to implement reconfigurable systems that preserve consistency and

minimize disruption?.

2.3 Fault-Tolerance

Distributed systems may malfunction for a variety of reasons, including network failures, node
failures, software errors, and even programmed system shutdowns for maintenance. In addition, in
component-based systems it is also common to have situations in which a part of the system fails

while the remaining parts continue to work properly. The challenge is to develop fault-tolerant

! As we show in the next chapters, our architecture per se does not guarantee consistency and minimal disruption
but it provides the system support that is required to implement it.

component-based systems that are able to detect partial failures and change themselves to achieve
a new configuration where system execution can continue normally. To carry out reconfiguration
in the event of failure, it is important to know which components depend on the faulty component
and which components depend on the parts of the system being reconfigured.

It is hard to create robust and efficient systems if the dynamic dependencies between components
are not well understood. Furthermore, it is very common to find cases, in which a component fails
to accomplish its goal because an unspecified dependency is not properly resolved. Sometimes, the
graceful failure of one component is not properly detected by other components leading to total
system failure. This thesis shows how proper dependence management can help in the development

of robust distributed systems.

2.4 Adaptation

Highly heterogeneous platforms and varying resource availability motivates the need for self-adapting
software. Applications can improve their performance by using different algorithms in different sit-
uations and switching from one algorithm to another according to environmental conditions. Sig-
nificant variations in resource availability should trigger architectural reconfigurations, component
replacements, and changes in the components’ internal parameters.

Consider, for example, the network connectivity of a mobile computer as its user commutes from
work to home. As the user switches from a wired connection at the office, to a wireless WAN using
a cellular phone, and finally, to a modem connection at home, the available bandwidth changes by
several orders of magnitude. The movement is also accompanied by changes in latency, error rates,
connectivity, protocols, and cost.

Ideally, we would like to have a system capable of maintaining an explicit representation of the
dependencies among the network drivers, transport protocols, communication services, and the ap-
plication components that use them. Only then, it would be possible to inform the interested parties
when significant changes occur. Upon receiving the change notifications, applications and services
can select different mechanisms, replace components, and modify their internal configuration to

adapt to the changes, optimizing performance.

In the next few chapters, we present a novel architecture for dependence management and show

how it facilitates the construction of flexible software systems for dynamic environments.

10

Chapter 3

Overall Architecture

In the introductory chapter, we saw that modern middleware and operating systems do not provide
proper mechanisms for dependence management in component-based distributed systems. The
lack of such mechanisms leads to several problems related to administration, reliability, quality of
service, and dynamic configuration. To solve these problems, we present mechanisms for dependence
representation in complex software systems and describe an integrated architecture that uses these
mechanisms to provide dynamic (re)configuration while still supporting reliability, quality of service,

customizability, and scalability.

3.1 The Big Picture

Figure 3.1 presents a schematic view of the major elements of our architecture. It shows the chap-
ters in which each element is described in detail. Prerequisite specifications reify static dependencies
of components towards its environment while component configurators reify dynamic, runtime de-
pendencies. Automatic configuration aims at automating management, easing the work of users
and administrators. The automatic configuration process is based on the prerequisite specifica-
tions, and constructs the component configurators. Mobile reconfiguration agents, in turn, improve
management by making it more scalable and efficient.

The contributions of this thesis focus on the four aspects on the top of Figure 3.1, leveraging
the work of others on standard CORBA Services and on QoS-aware Resource Management. Figure
3.2 depicts the relationships among the six elements in the architecture.

In the following sections of this chapter, we provide an overview of the major elements of our

11

Prerequisite
Specifications

(chapter 4)

Component
Configurators

Automatic
Configuration

(chapter 4) (chapter 5)

Mobile
Reconfiguration
Agents

(chapter 6)

CORBA QoS-Aware
Services Resour ce M anagement

Figure 3.1: Overall Architecture for Dynamic Configuration

architecture explaining the relationships depicted in Figure 3.2. In the subsequent chapters, we

give a more in-depth description of each of the aspects of the architecture.

3.2 Automatic Configuration

Software systems are evolving more rapidly than ever before.

web browsers, text editors, and operating systems once every few months. System administrators
and users of personal computers spend an excessive amount of time and effort configuring their

computer accounts, installing new programs, and, above all, struggling to make all the software

work together!.

In environments like MS-Windows, the installation of some applications is partially automated

by “wizard” interfaces that direct the user through the installation process. However, it is common

'When even PhD students in Computer Science have trouble keeping their commodity personal computers func-
tioning properly, one can notice that something is very wrong in the way that commercial software is built nowadays.

12

Vendors release new versions of

Component | notifies

M Configurators |
g A
Mobile 5
Reconfiguration é
Agents
Automatic
Configuration &\
ﬁ Prerequisite
Specifications
&,
g R\
Y
CORBA QoS-Aware
Services Resour ce Management

Figure 3.2: Relationships

to face situations in which the installation cannot complete or in which it completes but the software
package does not run properly because some of its (unspecified) requirements are not met. In other
cases, after installing a new version of a system component or a new tool, applications that used to
work before the update, stop functioning. It is typical that applications on MS-Windows cannot be
cleanly uninstalled. Often, after executing special uninstall procedures, “junk” libraries and files
are left in the system. The application does not know if it can remove all the files it has installed
because the system does not provide the clear mechanisms to specify which applications are using
which libraries.

To solve this problem, we need a completely new paradigm for installing, updating, and re-
moving software from workstations and personal computers. We propose to automate the process
of software maintenance with a mechanism we call Automatic Configuration. In our design of an

automatic configuration service for modern computer environments, we focus on two key objectives:

1. Network-Centrism and

2. an “What You Need Is What You Get” (WYNIWYG) model.

13

Network-Centrism refers to a model in which all entities, users, software components, and
devices exist in the network and are represented as distributed objects. Each entity has a network-
wide identity, a network-wide profile, and dependencies on other network entities. When a particular
service is configured, the entities that constitute that service are assembled dynamically. Users no
longer need to keep several different accounts, one for each device they use. In the network-centric
model, a user has a single network-wide account, with a single network-wide profile that can be
accessed from anywhere in the distributed system. The middleware is responsible for instantiating
user environments dynamically according to the user’s profile, role, and the underlying platform
[CKB*00].

In contrast to existing operating systems, middleware, and applications where a large number
of non-utilized modules are carried along with the standard installation, we adopt a What You Need
Is What You Get model, or WYNIWYG. In other words, the system configures itself automatically
and loads a minimal set of components required for executing the user applications in the most
efficient way. The components are downloaded from the network, so only a small subset of system
services are needed to bootstrap a node, leading to the construction of “network-computers”.

In the Automatic Configuration model, system and application software are composed of network-
centric components, i.e., components available for download from a Component Repository present
in the network. Component code is encapsulated in dynamically loadable libraries (known as
“DLLs” in Windows and “shared objects” in Unix), which enables dynamic linking.

Each application, system, or component? specifies everything that is required for it to work
properly (both hardware and software requirements). This collection of requirements is called

Prerequisite Specifications or, simply, Prerequisites.

3.2.1 Prerequisites

The prerequisites for a particular inert component (stored on a local disk or on a network component
repository) must specify any special requirement for properly loading, configuring, and executing

that component. We consider three different kinds of information that can be contained in a list

2From now on, we use the term “component” not only to refer to a piece of an application or system but also to

refer to the entire application or system. This is consistent since, in our model, applications and systems are simply
components that are made of smaller components.

14

of prerequisites.
1. The nature of the hardware resources the component needs.
2. The capacity of the hardware resources it needs.
3. The software services (i.e., other components) it requires.

The first two items are used by QoS-Aware Resource Management Services to determine where,
how, and when to execute the component. QoS-aware systems can use these data to enable proper
admission control, resource negotiation, and resource reservation. The last item determines which
auxiliary components must be loaded and in which kind of software environment they will execute.

The first two items — reminiscent of the Job Control Languages of the mid-1960s — can be
expressed by modern QoS specification languages such as QML [FK99b] and QoS aspect languages
[LBST98], or by using a simpler format such as SPDF (see Section 4.2.1 and [KCM*99]). The third
item is equivalent to the require clause in architectural description languages like Darwin [MDK94]
and module interconnection languages like the one used in Polylith [Pur94].

The prerequisites are instrumental in implementing the WYNIWYG model as they let the
system know what the exact requirements are, for instantiating the components properly. If the
prerequisites are specified correctly, the system not only executes all the necessary components to
activate the user environment, but also executes a minimal set of components required to achieve
that.

We currently rely on the component programmer to specify component prerequisites. Mecha-
nisms for automating the creation of prerequisite specifications and for verifying their correctness
require further research and are beyond the scope of this thesis. Another interesting topic for future
research is the refinement of prerequisites specifications at runtime according to what the system
can learn from the execution of components in a certain environment. This can be achieved by

using QoS profiling tools such as QualProbes [LNO0O].

3.3 Component Configurator

The explicit representation of the dynamic dependencies is achieved through special objects at-

tached to each relevant component at execution time. These objects are called component configu-

15

rators; they are responsible for reifying the runtime dependencies for a certain component and for
implementing policies to deal with events coming from other components.

While the Automatic Configuration Service parses the prerequisite specifications, fetches the
required components from the Component Repository, and dynamically loads their code into the
system runtime, it uses the information in the prerequisite specifications to create component
configurators representing the runtime inter-component dependencies. Figure 3.3 depicts the de-

pendencies that a component configurator reifies.

dependson dependson
/ﬂ\ //\
Q COMPONENT
_x CONFIGURATOR O
HOOKED O
COMPONENTS CLIENTS

COMPONENT
IMPLEMENTATION

Figure 3.3: Reification of Component Dependencies

Each component C has a set of hooks to which other components can be attached. These are
the components on which C' depends and are called hooked components. There might be other
components that depend on C, these are called clients. In general, every time one defines that a

component C7 depends on a component Cso, the system should perform two actions:
1. attach C5 to one of the hooks in C; and
2. add C] to the list of clients of Cs.
As an example, consider a web browser that specifies, in its list of prerequisites, that it requires a

16

TCP/IP service, a window manager, a local file service, and an implementation of the Java Virtual
Machine (JVM). Its component configurator should maintain a hook for each of these services.
When the browser is loaded, the automatic configuration system must verify whether these services
are available in the local environment. If they are not, it must create new instances of them. In
any case, references to the services are stored in the browser configurator hooks and may be later
retrieved and updated if necessary.

Component configurators are also responsible for distributing events across the inter-dependent
components. Examples of common events are the failure of a client and destruction, internal
reconfiguration, or replacement of the implementation of a hooked component. The rationale is
that such events affect all the dependent components. The component configurator is the place
where programmers must insert the code to deal with these configuration-related events.

Component developers can program specialized versions of component configurators that are
aware of the characteristics of specific components. These specialized configurators can, therefore,
implement customized policies to deal with component dependencies in an application-specific way.

For an example of how customized component configurators could help applications, consider
a QoS-sensitive video-on-demand client that reserves a portion of the local CPU for decoding a
video stream. The application developer can program a special configurator that registers itself
with the QoS-aware resource management service. In this way, when the resource management
service detects a change in resource availability that would prevent the application from getting the
desired level of service, it notifies the configurator (as shown in Figure 3.2). The configurator, with
its customized knowledge about the application, sends a message to the video server requesting
that the latter decrease the video frame rate. Then, with a lower frame rate, the client is able
to process the video while the limited resource availability persists. When the resources go back
to normal, another notification allows the video-on-demand configurator to re-establish the initial

level of service.

3.4 Reconfiguration and Inspection Agents

The automatic configuration mechanism described in Section 3.2 adopts a pull-based approach for

code updates and configuration. In other words, the service running in a certain network node

17

takes the initiative to pull the code and configuration information from a Component Repository.
In large-scale systems, this may not be enough. To support efficient and scalable management, we
also need a mechanism to allow system administrators to push code and configuration information
into the network. Our architecture achieves this by using the concept of mobile agents [KG99).
The architecture comprises of special administrative tools that are used to create mobile agents
and inject them into the network. The agent traverses the network and, in each node, is able to

perform three kinds of actions:
1. install the code for new components,

2. reconfigure the node, changing its working parameters and its software architecture (e.g., by

adding, removing, and replacing components), and
3. collect information about the node’s dynamic state.

After visiting all the nodes specified by the administrator, the agent returns to the administrator
tool and displays the results of its actions along with the collected information.

At each node, the agent inspects and reconfigures the components through their component
configurators so that the dependencies are still managed properly. Reconfiguration and inspection
agents can be built over low-level mechanisms such as sockets and simple command interpreters.
They can also use more sophisticated facilities like the CORBA Naming Service for locating the
nodes to be visited, the CORBA middleware for communication, and a Java virtual machine for

agent execution.

The following chapters present an in-depth description of the issues associated with each of the

architectural elements presented in this chapter and discusses their implementation in more detail.

18

Chapter 4

Automatic Configuration Service

As described in the previous chapter, automatic configuration enables the construction of network-
centric systems following a WYNIWYG model. To experiment with these ideas, we developed
an Automatic Configuration Service for the 2K operating system [KCM™00]. In this chapter, we
present the framework in which the service is based and describe a concrete implementation of the

service. We conclude the chapter by discussing interactions with other services and use cases.

4.1 A Flexible Framework

Different applications domains may have different ways of specifying the prerequisites of their
application components. Therefore, rather than limiting the specification of prerequisites to a
particular language, we created a framework in which different kinds of prerequisite descriptions can
be utilized. To validate the framework, we designed SPDF, a very simple, text-based format that
allowed us to perform initial experiments. In the future, other more elaborated prerequisite formats
including sophisticated QoS descriptions [FK99b, LBS'98] can be plugged into the framework
easily.

In addition, depending upon the dynamic availability of resources and connectivity constraints,
different algorithms for prerequisite resolution may be desired. For example, if a diskless PDA is
connected to a network through a 2Mbps wireless connection, it will be beneficial to download all
the required components from a central repository each time they are needed. On the other hand,
if a laptop computer with a large disk connects to the network via modem, it will probably be

better to cache the components in the local disk and re-use them whenever is possible.

19

Figure 4.1 shows how the architecture uses the two basic classes of the Automatic Configuration
framework: prerequisite parsers and prerequisite resolvers. Administrators and developers can plug

different concrete implementations of these classes to implement customized policies.

Automatic Configuration Framework

1

load application > Prerequisite resolve prereq | Component
return reference € 4 Resolver 21 ! o Repository
recursive A ! :
@l g v2.2
Prerequisite
Par ser

w

allocate resour ces

Y ‘
— ¥
QoS-Aware Local
Resor ce Manager Cache

Figure 4.1: Automatic Configuration Architecture

The architecture for automatic configuration works as follows. First, the client sends a request
for loading an application by passing, as parameters, the name of the application’s “master” com-
ponent and a reference to a component repository (step 1 in Figure 4.1). The request is received
by the prerequisite resolver, which fetches the component code and prerequisite specification from
the given repository, or from a local cache, depending on the policy being used (step 2.1).

Next, the prerequisite resolver calls the prerequisite parser to process the prerequisite specifi-
cation (step 2.2). As it scans the specification, the parser issues recursive calls to the prerequisite
resolver to load the components on which the component being processed depends (step 2.3). This
may trigger several iterations over steps 2.1, 2.2, and 2.3.

After all the dependencies of a given component are resolved, the parser issues a call to the
Resource Manager to negotiate the allocation of the required resources (step 3). After all the
application components are loaded, the service returns a reference to the new application to the

client (step 4).

20

4.2 A Concrete Implementation

To evaluate the framework, we created concrete implementations of the prerequisite parser and
resolver. The prerequisite parser, called SPDFParser, processes SPDF specifications. The first pre-
requisite resolver, called SimpleResolver, uses CORBA to fetch components from the 2K Com-
ponent Repository. The second, called CachingResolver, is a subclass of SimpleResolver that

caches the components on the local file system.

4.2.1 SPDF

We designed the Simple Prerequisite Description Format (SPDF) to serve as a proof-of-concept
for our framework. An SPDF specification is divided in two parts, the first is called hardware
requirements and the second, software requirements. Figure 4.2 shows an example of an SPDF
specification for a hypothetical web browser. The first part specifies that this application was
compiled for a Sparc machine running Solaris 2.7, that it requires at least 5MB of RAM memory
but that it functions optimally with 40 MB of memory, and that it requires 10% of a CPU with
speed higher than 300MHz.

:hardware requirements
machine_type SPARC

0S_name Solaris
os_version 2.7
min_ram 5MB
optimal_ram 40MB
cpu_speed >300MHz
cpu_share 10%

:software requirements

FileSystem CR:/sys/storage/DFS1.0 (optional)
TCPNetworking CR:/sys/networking/BSD-sockets
WindowManager CR:/sys/WinManagers/simpleWin
JVM CR:/interp/Java/jvml.2 (optional)

Figure 4.2: A Simple Prerequisite Description

The second part, software requirements, specifies that the web browser requires four components
(or services): a file system (to use as a local cache for web pages), a TCP networking service (to
fetch the web pages), a window manager (to display the pages), and a Java virtual machine (to

interpret Java Applets).

21

The line
FileSystem CR:/sys/storage/DFS1.0 (optional)
specifies that the component that implements the file system (or the proxy that interacts with the
file system) can be located in the directory /sys/storage/DFS1.0 of the component repository (CR).
It also states that the file system is an “optional” component, which means that the web browser
can still function without a cache. Thus, if the Automatic Configuration Service is not able to load

the file system component, it simply issues a warning message and continues its execution.

4.2.2 Simple Resolver and Caching Resolver

The SimpleResolver fetches the component implementations and component prerequisite specifi-
cations from the 2K Component Repository. It stores the component code in the local file system
and dynamically links the components to the system runtime. As new components are loaded, they
are attached to hooks in the component configurator of the parent component, i.e., the component
that required it. In the web browser example, the SimpleResolver would add hooks to the web
browser configurator, call them FileSystem, TCPNetworking, WindowManager, and JVM, and attach
the respective component configurators to each of these hooks.

Resolvers can be extended using inheritance. For example, with very little work, we extended
the SimpleResolver to create a CachingResolver that checks for the existence of the component

in the local disk (cache) before fetching it from the remote repository.

4.3 Interactions with Resource Management Services

The QoS-aware Resource Management service can be provided by systems like SMART [NL97]
and the Dynamic Soft Real-Time Scheduler (DSRT) [NhCN98]. In the latter case, DSRT can use
the QoS requirements in the prerequisite specifications to perform QoS-aware admission control,
negotiation, reservation, and scheduling.

Although our architecture permits the integration of the Automatic Configuration Service with
any Resource Management scheme, a concrete implementation of this integration is beyond the
scope of this thesis. This has been addressed by the research on the 2K Resource Management
Service [Yam00] and QoS Proxy [XWNO0] carried out by other members of the 2K team.

22

4.4 Use Cases

The Automatic Configuration Service has been used successfully in a multimedia distribution sys-
tem [KCNOO] described in Section 7.2. In addition, it is currently being used in the development

of three other systems in our research group.

1. 2KFS, the 2K Distributed File System will use the Automatic Configuration Service to load
data management components, called Containers [HBCO00], to customize the system at run-

time according to user requests.

2. LegORB, a component-based ORB, will use this service to load a minimal set of ORB com-

ponents satisfying application requirements [RMKCO00].

3. A QoS-aware video on demand system [XWNOO] uses this service to load video player com-

ponents on demand.

In all these applications, the Automatic Configuration Service simplifies management greatly.
Whenever new components are requested, the service downloads the most up-to-date version of
each component from the component repository and installs them locally. This provides several

advantages including the following.

e It eliminates the need to upload components to the entire network each time a component is

updated.

e It eliminates the need to keep track manually of which machines hold copies of each component

because updates are automatic.

e It helps machines with limited resources, which no longer need to store all components locally.

23

Chapter 5

Component Configurators

As explained in Section 3.3, component configurators are responsible for holding information about
the dynamic inter-component dependencies at runtime and implementing reconfiguration policies.

We begin this chapter by stressing the benefits of this model in achieving a clear separation of
concerns. Next, we describe concrete implementations of component configurators in C++, Java,

and CORBA. Finally, we discuss customization of component configurators.

5.1 Separation of Concerns

By combining the ideas of computational reflection [Smi84] and object-orientation, Kiczales created
the concept of the meta-object protocol [KARBI1]. In his model, the programming language can be
modified and extended by the user, who becomes a partner in language design. The protocol makes
a distinction between base-level and meta-level objects. It uses meta-level objects, or meta-objects,
to specify the behavior of the basic language operations and constructs. If the user does not alter
the meta-level, the default meta-objects are used and the language is not altered. However, if the
user specializes the meta-objects by using object-oriented inheritance, then the language behavior
changes and can be customized to the application.

The meta-object protocol allows for a clean separation of concerns in the implementation of non-
functional aspects of base-level objects. Aspects such as persistence, replication, and reconfiguration
can be addressed by the meta-objects while the basic application objects are not modified.

Although this is an extremely flexible model that allows for a clean separation of concerns,

previous implementations led to significant performance degradations since every method invocation

24

to an object was intercepted by its meta-object.

Kramer introduced the concept of configuration programming [Kra90], claiming that, to con-
struct and manage distributed applications in a clean and effective way, it is necessary to adopt
a configuration language independent of the component implementation language. He argued that
the code for configuration should be separated from the component code.

Instead of relying on a different configuration language such as Darwin [MDK94, MTK97],
this thesis proposes a novel model in which the basic functionality of the configuration engine is
exported through a well-defined interface!. The actual configuration code is written in any language
the developer chooses and is encapsulated in the component configurators. The latter can be reused
in different contexts, but they can also be customized to each situation.

Using reflection terminology, component configurators are meta-objects, but with the advantage
that their code is only executed when (re)configuration is required. They do not intercept every
method call and, therefore, do not degrade application performance.

Our model is better suited for the highly heterogeneous environments of the future since the
configuration engine can be defined using OMG IDL and then accessed, via CORBA, from any
platform, using any programming language. Besides, the dynamic dependencies are accessible at
runtime and, unlike in conventional configuration languages, can be inspected and modified at any

time.

5.2 Implementation

Component configurators are normally dormant until they receive a request for reconfiguration or
some other event notification. However, if the application developer desires, a certain component
configurator can be active and have its own thread of execution. In this case, it could, for exam-
ple, monitor system activity and send requests and event notifications to other configurators and
components.

Depending on the way it is implemented, a component configurator is capable of referring to

components running on a single address space, on different address spaces and processes, or even

'We define the configuration interfaces in C++ using abstract classes, in Java using the interface keyword, and
in CORBA using OMG IDL.

25

running on different machines in a distributed system.

First, we describe a C++ implementation for a single address space. Next, we describe a
Java implementation that was initially designed for a single address space but later extended to
distributed systems using Java RMI. Finally, we describe a CORBA implementation for distributed

systems.

5.2.1 CH+

Figure 5.1 contains a simplified declaration? of a ComponentConfigurator base class in C++. Figure

5.2 shows a schematic representation of some of its method calls.

class ComponentConfigurator {
public:

ComponentConfigurator(Object *implementation);
“ComponentConfigurator ();

int addHook (const char *hookName) ;
int deleteHook (const char *hookName) ;
int hook (const char *hookName, ComponentConfigurator *component);
int unhook (const char *hookName) ;

int registerClient (ComponentConfigurator *client, const char *hookNameInClient=NULL);
int unregisterClient (ComponentConfigurator *client);

int eventFromHookedComponent (ComponentConfigurator *hookedComponent, Event e);
int eventFromClient (ComponentConfigurator *client, Event e);

char *name ();

char *info (;

DependencyList *listHooks ();

DependencyList *listClients ();

ComponentConfigurator *getHookedComponent (const char *hookName) ;

Object *implementation ();

Figure 5.1: The ComponentConfigurator C++ Base Class

The class constructor receives a pointer to the component implementation as a parameter. It
can be later obtained through the implementation() method.
The addHook() and deleteHook() methods are used to create and remove component configurator

hooks. Each hook is identified by a string, representing its name.

2Complete implementations of the component configurator framework in C4++, Java, and CORBA are available
at http://choices.cs.uiuc.edu/2k/ComponentConfigurator.

26

dependson dependson
/_/\ //—\

eventFromHookedComponent ())
eventFromClient ()
-

(un)hook () |

— T

ister Client
COMPONENT (unregserclient 0

CONFIGURATOR «) O

o\

HOOKED

COMPONENTS CLIENTS

COMPONENT
IMPLEMENTATION

Figure 5.2: Methods for Specifying Dependencies and Sending Events

The hook() method is used to specify that this component depends upon another component and
unhook() breaks this dependence. The registerClient() and unregisterClient() methods are similar
to hook() and unhook() but they specify that other components (called clients) depend upon this
component.

eventFromHookedComponent() announces that a component which is attached to this component
has sent an event. The ComponentConfigurator() class is subclassed to implement different behaviors
when events are reported. Examples of common events are the destruction of a hooked component,
the internal reconfiguration of a hooked component, or the replacement of the implementation of a
hooked component.

eventFromClient() is similar to the previous method but it announces that a client has sent
an event. This can be used, for example, to trigger reconfigurations in a component to adapt to
new conditions in its clients. Our reference implementation defines a basic set of events including
STARTED, FINISHED, SHUTDOWN, RECOVERED, RECONFIGURED, REPLACED, MIGRATED,

DELETED, and FAILED. Applications can extend this set by defining their own events.

27

name() returns a pointer to a string containing the name of the component and info() returns a
pointer to a string containing a description of the component. Specific info() implementations can
return different kinds of information like a list of configuration options accepted by the component,
or a URL for its documentation and source code.

listHooks() returns a pointer to a list of DependencySpecifications. A DependencySpecification is

a structure defined as

struct DependencySpecification {
const char *hookName;
ComponentConfigurator *component;

};

listClients() returns a pointer to a list of DependencySpecifications corresponding to the com-
ponents that depend on this component (its clients) and the name of the hooks (in the client’s
ComponentConfigurator) to which this component is attached.

Finally, getHookedComponent() returns a pointer to the configurator of the component that is

attached to a given hook.

5.2.2 Java

The Java implementation is very similar to the C++ one. Its declaration as a Java interface is
shown in Figure 5.3. There are two minor differences with respect to the C++ version. The first
is the destroyComponentConfigurator() method. Unlike C++, Java does not have explicit destruc-
tors. So, instead of calling the delete operator, as done in C++, Java programmers can request
a component configurator to release its resources and prepare for its destruction by calling the
destroyComponentConfigurator() method. Concrete implementations of the ComponentConfigurator
interface can also choose to call this method on their implementation of the finalize () method,
which is called by the JVM garbage collector.

The second difference is the addition of exceptions. When we first implemented the C++ Com-
ponentConfigurator, not every C++ compiler supported exceptions properly®. The C++ compilers

that do support exceptions, generate a considerably larger code when exceptions are used, which

3Nowadays, all major C++ compilers do support exceptions.

28

public interface ComponentConfigurator {

public void destroyComponentConfigurator ();
public void addHook (String hookName) throws ElementExists;

public void deleteHook (String hookName) throws NotFound;
public void hook (String hookName, ComponentConfigurator cc)
throws HookBusy, NotFound;
public void unhook (String hookName)
throws HookVacant, NotFound;

public void registerClient (ComponentConfigurator client,
String hookNameInClient)
throws ElementExists;

public void unregisterClient (ComponentConfigurator client,
String hookNameInClient)
throws NotFound;

public void eventFromHookedComponent (ComponentConfigurator hookedComponent,
ComponentEvent e) ;

public void eventFromClient (ComponentConfigurator client,
ComponentEvent e);

public String name Q);

public String info ();

public Vector listHooks ();
public Vector listClients ();
public void name (String s);
public void info (String s);

Figure 5.3: The ComponentConfigurator Java Interface

29

may be undesirable for small devices with limited memory. So, we decided not to add them to
the base C++ class. Java compilers and virtual machines always support exceptions, so our Java

ComponentConfigurator uses them.

5.2.3 CORBA

In CORBA, the ComponentConfigurator interface is defined using OMG IDL. Figure 5.4 shows a
complete definition of the Configuration module which includes the ComponentConfigurator interface,
definitions of dependencies and type structures, and a Factory interface. In this case, the interface
can be implemented in any programming language and different implementations can communicate
with each other seamlessly. We developed an implementation in C++ while other students in our
department (Jennifer Jackson and Steve Zelinka) developed a Java version using the ORB that
comes with the Java 1.2 distribution.

What is new here is the introduction of a factory for component configurators. The factory is
a CORBA server that is responsible for creating component configurator objects that reside in the
address-space in which the factory is located. Depending on where the programmer chooses to place
the factories, the component configurators can be (1) co-located with their respective component
implementations, (2) located in a separate process in the same machine or (3) located in a central
node on the network while the component implementations are distributed. In all three cases, the
communication with the component configurators is done exactly in the same way, via CORBA.
No changes are required in the code to interact with local or remote component configurators.

In the CORBA implementation, a DependencySpecification stores a CORBA Interoperable Ob-
ject Reference (IOR) so that the component configurator is able to reify dependencies among
distributed components.

When a CORBA component is destroyed, the component implementation (or the ORB) must
call the configurator destructor so that it can tell its clients that the destruction is taking place. If
a node crashes or if the whole process containing both the component and the configurator crash,
it might not be possible to execute the configurator destructor. In this case, the clients will not be
informed of the component destruction. Subsequent CORBA invocations to the crashed component

will raise an exception announcing that the object is not reachable or that it does not exist. This

30

module Configuration

{

enum EventType {STARTED, FINISHED, SHUTDOWN, RECOVERED, RECONFIGURED, REPLACED,
MIGRATED, DELETED, FAILED, APP_SPECIFIC, UNKNOWN};

struct Event

{

EventType type;

string

};

description;

interface ComponentConfigurator; // forward declaration

struct DependencySpecification

{

string

name;

ComponentConfigurator componentConfig;

};

typedef sequence<DependencySpecification> DependencyList;

interface ComponentConfigurator

{

exception invalidArgument{};

exception ElementExists{};

exception NotFound{};
exception HookBusy{};
exception HookVacant{};

void
void
void
void
void
void
void

void

void

string hookName) raises (ElementExists);

string hookName) raises (NotFound);

string hookName, in ComponentConfigurator cc) raises (NotFound);
string hookName) raises (HookVacant, NotFound);

ComponentConfigurator client,

string hookNameInClient) raises (ElementExists);
ComponentConfigurator client,

string hookNameInClient) raises (NotFound);

eventFromHookedComponent (in ComponentConfigurator hookedComponent,

destroy ();
addHook (in
deleteHook (in
hook (in
unhook (in
registerClient (in
in
unregisterClient (in
in
eventFromClient

string name ();
string info ();
DependencyList listHooks ();

ComponentConfigurator getHookedComponent(in string hookName) ;
unsigned short number0OfClients ();

Dependencylist listClients ();

Object implementation ();

};

interface Factory

{

in Event e, in unsigned short timeToLive);
(in ComponentConfigurator client,
in Event e, in unsigned short timeToLive);

ComponentConfigurator newConfigurator (in string name, in Object implementation);
oneway void shutdown ();

}s
};

Figure 5.4: The Configuration Module IDL interface

31

exception may be caught by the client component, which would be responsible for locating a new
server component and updating its component configurator. Alternatively, the exception could be
caught by an interceptor installed in the ORB, which could locate the new server and update the

client configurator without the client’s knowledge.

5.3 Customization

Our infrastructure includes a basic component configurator that provides simple implementations
for the dependency management operations (e.g., addHook(), registerClient()) and a few subclasses
implementing additional functionality such as mutual-exclusion (see Section 5.3.2).

Programmers can extend these basic classes in two ways. First, they can be customized to
provide some generic functionality that could be reused by several applications in different contexts.
This could include support for persistence, security, replication, and so on. In Section 5.3.4, we
discuss how to customize a component configurator to support dynamic reconfiguration.

The second way of extending component configurators refers to application-specific extensions.
For example, the programmer of a computationally-intensive distributed scientific application could
include code to monitor local CPU load in the component configurator. The configurators, then,
could exchange events with information about the CPU load on their machines and implement an
algorithm for dynamic load balancing. The component would contain the code for carrying out the
application task (scientific computation) while the component configurator would encapsulate the
policies for load balancing.

We now discuss some examples of component configurator customization that are particularly

interesting.

5.3.1 An Application-Specific Customization

We present here a simple example of an application-specific customization. A detailed example of a
customization to support fault-tolerance in a QoS-sensitive application is presented in Section 7.2.

The dynamic dependence information enables the reconfiguration of components that are al-
ready running. Although our infrastructure does not guarantee safe reconfiguration by itself, it

does provide a valuable framework for programmers to implement safe reconfiguration more easily

32

and uniformly.

Continuing with our web browser example (introduced in Section 4.2), the application developer
could implement a WebBrowserConfigurator by using inheritance from the ComponentConfigurator
class and customizing it to deal with the dynamic replacement of the system’s JVM. As shown in
Figure 5.5, the eventFromHookedComponent method can be overridden to catch REPLACED events

coming from the JVM ComponentConfigurator.

int WebBrowserConfigurator: :eventFromHookedComponent (ComponentConfigurator *cc, Event e)
{
if (cc == JVMConfigurator)
{
if (e == REPLACED)
try {
FrozenObjs fo = currentJVM->freezeAllObjs ();
currentJVM = JVMConfigurator->implementation ();
currentJVM->meltObjects (fo);
}
catch (Exception exp)
throw ReconfigurationFailed(exp);
}
else ...
}

Figure 5.5: Customization of the eventFromHooked Component Method

When the implementation of the JVM is updated, the JVMConfigurator sends a REPLACED
event to its clients. When the WebBrowserConfigurator receives this event, it freezes all the objects
in the current JVM (using the Java object serialization mechanism), updates the current JVM with

the new JVM implementation, and melts the objects in the new JVM?*.

5.3.2 Locking Configurator

The most basic version of the C++ component configurator we implemented is called SimpleCon-
figurator. It does not provide any support for controlling concurrent accesses to the configurator
by multiple threads. To support that, we implemented a subclass called LockingConfigurator.
LockingConfigurator uses two locks. The first controls read and write accesses to the dependen-
cies and the second, to the component implementation. Both permit either multiple concurrent

readers (and no writers) or a single writer.

4Since the Java serialization mechanism does not record thread execution state, this must be performed with
mechanisms like the ones presented in [Bou99a, Bou99b] and [Fun98|.

33

The listHooks() method, for example, is implemented by first acquiring the dependencies lock

in reading mode, then calling the equivalent method in the super class, and then releasing the lock.

inline DependencyList *listHooks ()
{
dependenciesLock_.acquire_read();
DependencyList *ret = SimpleConfigurator::listHooks();
dependenciesLock_.release ();

return ret;

The registerClient() method, on the other hand, acquires the lock in writing mode.

inline int registerClient (ComponentConfigurator *client, const char *hookNameInClient)
{
dependenciesLock_.acquire_write();
int ret = SimpleConfigurator::registerClient(client, hookNameInClient) ;
dependenciesLock_.release ();

return ret;

The implementationLock can be obtained through an accessor method. In that way, program-
mers can lock the implementation of a component and be sure that it will not change while it is

locked.

5.3.3 Dependency Attributes

After some experience with the configurators, we noticed that, in some applications, it is desirable
to assign attributes to dependencies. In that way, we can have different types of dependencies.
Dependency attributes can also be used to store more information about the characteristics of that
dependency. Developers can program policies that treat dependencies differently based on their
attributes.

Consider, for example, a File Server that has two types of clients. The first are simple client
programs activated by users. The second are backup storage devices that simply read everything

from the File Server from time to time, saving its contents into tape. When the File Server is shut

34

down by the administrator, its configurator may need to send an event to the backup devices so that
its content can be copied. In this case, the shut down process should be delayed until all the server
contents is backed up to tape. By using attributes, the File Server configurator can differentiate
between the clients that need to be notified synchronously (backup devices) and clients that do not
need to be notified (user programs).

Figure 5.6 shows the Java ComponentConfiguratorAttrib interface that inherits from the basic
ComponentConfigurator interface, adding support for attributes. DependencyAttributes is a list of
attributes; each attribute is defined as a <name,value> pair, where name is a string and value is

any Java object.

public interface ComponentConfiguratorAttrib extends ComponentConfigurator
{
public void addHook (String hookName, DependencyAttributes attributes)
throws ElementExists;

public void hook (String hookName, ComponentConfigurator cc,
DependencyAttributes attributes)
throws HookBusy, NotFound;

public void registerClient (ComponentConfigurator client, String hookNameInClient,
DependencyAttributes attributes)
throws ElementExists;

};

Figure 5.6: The ComponentConfiguratorAttrib Interface Supporting Attributes

Our implementation of the ComponentConfiguratorAttrib interface was used in a decentralized

information system [ESS*00] described in Section 5.4.

5.3.4 Supporting Consistent Dynamic Reconfiguration

In a general sense, when replacing an old component by a new one it may be necessary to transfer
the state from the former to the latter. This process can be automated by the reconfiguration
engine by requiring every component to implement a pair of operations get_state() and set_state().
All the components of a certain type must then agree on a common external representation for the
state of the components of that type. Then, the underlying engine simply transfers the state from
one component to the other, without having to interpret its meaning.

To replace a component and remove the old version safely, one must make sure that no other

35

component will try to contact the component being removed. This can be achieved by using a

combination of the following four mechanisms.

1. Using the ComponentConfigurator to notify all the components that have a reference to the

old one.
2. Using the ComponentConfigurator as an indirection on calls to replaceable components.
3. Leaving a forwarding pointer in place of the old component.

4. Making every access to the old component throw an exception to be captured by the client.
In this case, the client gets a reference to the new component by contacting a third party

such as the Naming Service.

5. Keeping the old versions accessible to old client components and redirecting new clients to
the new version. When the reference count in the old version reaches zero, it can be removed

safely.

It is possible to implement these mechanisms in a specialized subclass of the ComponentCon-
figurator. This can be achieved with an implementation of the ideas that Bloom and Day discuss
in [BD93], providing a more sophisticated support for dynamic reconfiguration at the middleware
level and requiring less application participation. Different combinations of these mechanisms can

be used in different parts of a single system.

5.4 Use Cases

The ComponentConfigurator model described in this chapter has been deployed in the following

systems.

1. dynamicTAQO uses the model to represent the dependencies among the internal components

of a CORBA ORB and support dynamic reconfiguration (see [KRL100] and Section 7.1).

2. SIDAM, a decentralized information system for disseminating road traffic information using
mobile agents [SGE98|. In this system, Menezes used customized component configurators

to manage dynamic configuration of LocatorServers implemented using Java RMI. In this

36

system, the LocatorServers objects are responsible for telling clients where they should
get their information. When LocatorServers are removed from the system, the component

configurators act to reconfigure the system automatically to maintain consistency.

According to experimental results, the use of the component configurator for dependence
management in this system imposes an overhead of 10% at initialization time. After the
initialization is completed, the component configurators only act when reconfiguration is

required and, therefore, impose no overhead during normal system execution [ESS*00].

3. A CORBA Persistent Object Service implemented by Arjun Iyer as a Masters project [Iye99].
Iyer used component configurators to represent the dependencies among his DataStore,
PersistentDataStore, PersistentObjectManager, and PersistentObject components. Al-
though Iyer did not implement support for dynamic reconfiguration and fault-tolerance, his
thesis discusses some of the issues involved in implementing these functionalities with the

component configurators.

4. A Distributed Chess game implemented by Colin Jones as a class project for CS423. The
CORBA component configurators were used to manage the dependencies among the different
components of the system: robot players, human players, game observers, game logger, and

the central chess server.

In addition to the completed systems described above, our model is being deployed in the

following ongoing projects.

1. LegORB, a component-based CORBA ORB [RMKCO00] targeted at embedded systems and
devices with little resources. In contrast to full ORB implementations that require, typically,
a few megabytes of memory, LegORB loads only the minimal set of components required
to provide the functionality required by each application. A minimal LegORB configuration
using component configurators to manage dynamic reconfiguration requires less than 150

Kbytes of memory.

2. A system for managing network-centric user environments for the 2K operating system
[CKB*00]. The model is used to keep references to user applications in the distributed

system, managing them properly.

37

Chapter 6

Reconfiguration Agents

Management of software configuration in large scale networks is a major problem in modern com-
puter systems. Scalability conflicts with dynamic flexibility since it is difficult to manage dynamic
changes in a large number of machines concurrently. Scalability is a topic that received very little
attention from previous research in dynamic configuration.

Internet services such as video on demand, on-line bookstores, and search engines must maintain
a high level of parallelism in order to fulfill the millions of requests they receive every hour. World-
wide services with high-bandwidth requirements such as on-line sales of software must be readily
available in many different countries. Services must be replicated or split across machines in different
locations, optimizing bandwidth and CPU utilization, and minimizing user response time.

Since software evolves rapidly and availability is a major requirement in these systems, the nat-
ural solution to cope with all these requirements is to use dynamic reconfiguration. The problem
is that reconfiguring and updating the software in a distributed collection of servers using conven-
tional tools is troublesome. Besides, it may lead to wasted bandwidth as duplicated information is
sent through the same Internet lines.

A significant limitation of the traditional administrative tools for reconfiguration is their scal-
ability. In existing systems supporting dynamic reconfiguration, the administrator must establish
a point-to-point connection between the administration node and the process that is going to be
reconfigured. Thus, if a system administrator needs to upgrade a certain component of an on-line
service composed of ten replicas located in different continents, it is necessary to connect to each
replica separately, upload the new implementation of the component, and reconfigure the replica.

As the latency in long-distance Internet connections tends to be high, this process is extremely

38

laborious and tiresome.

The solution we propose is to allow administrators to organize the nodes of their Internet systems
in a hierarchical manner for reconfiguration purposes. The administrator specifies the topology of
the distributed application as a directed graph and creates a mobile reconfiguration agent which
is injected into the network. The reconfiguration agent then visits the nodes of this graph of
interconnected nodes. Each node replicates and forwards the agent to neighboring nodes, processes
the reconfiguration commands locally, and collects the reconfiguration results, sending them back to
the neighboring agent source. Agents can carry not only reconfiguration and inspection commands,
but also the code for new components to be distributed throughout the network.

Using this approach, the administrator can organize the reconfiguration hierarchy to optimize
the data flow between distant application nodes. The reconfiguration commands are executed
in parallel in the various nodes, improving response time. If desired, the graph may contain
different levels of redundancy so that the system can tolerate the failure of some of the nodes in

the reconfiguration network.

6.1 Implementation

Our implementation is based on the dynamicTAO reflective ORB which is described in detail in
Section 7.1. dynamicTAO exports two interfaces for dynamic reconfiguration: an IDL interface
that can be used by CORBA clients and a simple ASCII interface based on commands send over
TCP/IP. The latter can be accessed via simple telnet connections and uses the commands specified
in the Distributed Configuration Protocol (DCP) (see Section 7.1 and [Kon98]). DCP includes
commands for inspection, reconfiguration, and code distribution.

To support agents, dynamicTAO was enhanced with mechanisms for receiving, processing,
and forwarding agents. The system also includes ConfigAgentBuilder, a graphical administrative
front-end, written in Java, for specifying reconfiguration graphs and for assembling and sending
reconfiguration agents [KCS'99).

The administrator selects those ORBs that will be part of the reconfiguration graph (see Figure
6.1(a)) and, using the mouse, draws directed edges connecting the graph nodes (see Figure 6.1(b)).

Each time a new ORB is selected from the list on the left-hand side of Figure 6.1(a), a new node

39

im
dubi Y du
dubi y dubi

gregarius.cs. uiuc3ss

(a) Selecting the graph nodes (b) Creating the graph edges
Figure 6.1: The dynamicTAO ConfigAgentBuilder Interface

is added to the graph in Figure 6.1(b).

Once the reconfiguration graph is established, a graphical interface assists the administrator
in building a script of DCP commands that are codified into a reconfiguration agent. Finally, the
administrator instructs the graphical front-end to send the agent to an initial node in the graph.
Figure 6.2(a) shows the composition of an agent with three DCP commands: list_categories,
list_loaded_implementations, and list_implementations.

Each agent contains

1. a copy of the reconfiguration graph (so that different agents can operate on different graphs

at the same time),
2. a script of DCP commands to be interpreted on each node in the graph, and

3. a unique sequence number which is used to avoid processing duplicated copies of the same

agent on the same node.

Upon receiving an agent, the ORB first checks whether it has been processed before by looking
at its local history of processed agents. If the agent has not been processed, it distributes the agent
to its neighbors (according to the reconfiguration graph included in the agent), processes the DCP

commands locally, and waits for the results of the agents sent to its neighbors. The ORB, then,

40

= DCP Command Selection = =] Results =]

DCP Command List Selected DCP Commands CREGARILS.CS.LIUC.EDL:GSE
LIST_CATEGORIES || . .
1. list_categories:
Concurrency
Security
Q0SProwy

2. list_leaded_implementations:
Concurrency:l
SeCUrity;2

3. list_implementations:Concurrency:
Reactive_Strategy

S
Thread_Pool_Strategy

DCF Command Parameters Input ||| | Thread_Strategy

Category Mame I Concurrency] IME.USP.BR:Z0QQ0

ErroriHost did not Reply

oK Cancel

_OK | caneel| | ||
M M Start Over | Send Another P.gent| Quit |

(a) Composing an agent (b) Information collected by an inspection agent

Figure 6.2: Sending and Receiving Agents

collects the replies from its neighbors, groups them with the results of its own reconfiguration, and
sends all of the information back to the node from which it received the agent. Each node waits
for the results from its agents for a certain period of time. A timeout is computed taking into
consideration the number of nodes the agent has already traversed.

The results returned by all the nodes in the reconfiguration graph are finally displayed to the ad-
ministrator through the graphical front-end. The system also draws attention to the nodes that did
not reply within a given timeout. Figure 6.2(b) shows the results returned by an agent containing
three DCP inspection commands (also called an inspection agent). Our agent dissemination system
can be seen as a simple, lightweight implementation of reliable multicast [Obr98| over TCP /IP. We
intentionally adopted this simple and reliable solution for agent transmission because it lets us
concentrate on the dynamic configuration aspects of the problem. However, depending upon the
topology of the reconfiguration network (for example, if the nodes have many output edges), it
may be worthwhile to use other underlying protocols such as IP-Multicast [DC90] for distributing
agents. In that case, however, the complexity of the middleware would be much higher since it

would have to guarantee reliability over a non-reliable protocol.

41

6.1.1 Java Agents

Our implementation supports agents with simple reconfiguration scripts based on the DCP protocol.
On the one hand, this allowed us to write an extremely lightweight interpreter that processes the
agents efficiently. This is very appropriate for PDAs and embedded systems with limited resources.
On the other hand, it limits the expressiveness of the reconfiguration agents. By using a more
powerful language for reconfiguration such as OCL [BBB198] or a general-purpose language like
Java or Emerald [JS95], the administrator would be able to write more sophisticated agents that
could use the agent and ORB state to make decisions about their actions. To achieve that, we
designed an infrastructure for Java agents that was implemented by Masters students in our group
[KGA™00].

To support this implementation, we encapsulated Sun’s Java Virtual Machine into a component
that can be dynamically loaded into the dynamicTAO domain; this component exports an interface
that contains operations for loading and interpreting Java bytecode. In addition to the reconfig-
uration topology graph, that now can be modified on-the-fly, the Java agent carries its dynamic
state from node to node and contains Java bytecode that is interpreted inside a sand-box so that
its actions can be limited. By using the DynamicConfigurator IDL interface (see Section 7.1.2), the
Java bytecode issues inspection and reconfiguration commands to the ORB domain. Based on the

result of these commands, the agent can
1. update the state it carries from node to node,
2. change its behavior to adapt to the environment and user preferences on each node, and
3. modify the reconfiguration graph, deciding to migrate to a different set of nodes.

In that manner, our framework offers both simple agents based on DCP scripts for environments
with limited resources and powerful Java agents that can carry state and modify its behavior along

the way.

42

6.2 Security

Although the introduction of mobile agents promotes significant benefits, it also brings additional
security concerns [Vig98]. Luckily, the problem of mobile agents security has been studied ex-
tensively in recent years and good results are starting to appear. When using mobile agents for

dynamic configuration, it is important to
1. restrict the sources of mobile code to trusted, authenticated entities [KGAT00, KGCM99],
2. limit the mobile code’s resource consumption [BKR98]|, and

3. limit its capabilities by confining it to secured environments like sand boxes for Java byte

code [Yel95] and the Janus sand box for native code [GWTBY6].

[VB99] shows how to isolate agents from one another. However, another important aspect, the
protection of the mobile agents from the execution environments, is still mostly unresolved. One can
find partial solutions in approaches like time-limited black-box security [Hoh98] and the clueless
agents [RS98] concept. The approach adopted in our group is to establish secure connections
between the nodes distributing the agent using a role-based access control framework. The details

are beyond the scope of this thesis and are described in [KGAT00] and [KGCM99].

6.3 Fault-Tolerance and Consistency

Our experience with distributed computer systems has shown that a wide range of applications do
not require strict consistency between the components in the different nodes. When deploying the
multimedia distribution system described in Section 7.2, for example, we were able to use different
versions of application components in different nodes simultaneously. In many cases, even if a
particular component update was successful in part of the nodes and failed in another part, the
distributed system could continue working together gracefully until all the updates were achieved
manually.

To keep the system small and efficient, we opted not to provide strong guarantees about the
execution of the reconfiguration commands in the current implementation. On a single node, some

reconfiguration commands may fail while others succeed; it is the responsibility of the agent to

43

catch the exceptions raised by the failed commands and treat them accordingly. Also, reconfigu-
ration commands may succeed on some nodes and fail on others. To cope with these errors, the
system detects the failures and the graphical front-end (shown in Figure 6.2(b)) displays, to the
administrator, where they occurred and the respective diagnosis messages. Then, using a separate
Java GUI developed by Luiz Claudio Magalhdes and called Doctor (the Dynamic ORB Configu-
ration Tool in Figure 6.3), the administrator can connect to the node where the failure occurred,
inspect its state and reconfigure the node manually. By navigating through ORB and application
components interactively, the administrator can investigate the causes of the errors, and fix them.

0l — DOCTolr)

Reactive_Strateqy
Thread_Pool_Strateg:
Security Thread_Strategy
QoSProsy
Interprating
downloaded_Hello
dewnleaded_Cencurr

Interpreter Resource _Factory

Co a Client_Strategy_Fact
Server_Strategy_Fact
Concurrenay:d

Demultiplexing
Dispatching
Marshalling_Strate

Figure 6.3: The Doctor Configuration Tool

On the other hand, it is possible to achieve the effects of atomic transactions using the func-
tionality we are offering through the Java agents. On an individual node, the Java agent can be
programmed to store the previous state of the system before starting to make any changes. Should

an error occur during the reconfiguration process on that node, the Java code can detect the error

44

messages and bring the configuration back to the initial state’.

To achieve the effects of atomic transactions on the distributed system as a whole, one can use
a different technique. According to our experience, reconfiguration failures happen, typically, when
a new component is loaded (and the dynamic loader cannot link it) or when the new component is
initialized (and it fails to locate the functions or allocate the resources it needs). Thus, we instruct
the administrator to separate its reconfiguration in two phases resembling the two-phase commit
protocol for atomic transactions [GR93|. First, the administrator sends an agent to load all the
required components and to initialize them by executing the operation load_implementation() (and,
if needed, configure_implementation()). If an error in any node occurs, the administrator chooses
between sending a new agent to unload the new components from all the nodes or using Doctor to
fix the individual errors. If the component implementations are loaded and initialized successfully
in all the nodes, the administrator sends a new agent to attach them to the proper applications and
ORB components, which would correspond to the commit phase of the two-phase commit protocol.

We found this to be sufficient for most of the application scenarios with which we work. How-
ever, some other applications require more strict guarantees of the ACID properties for atomic
transactions [GR93]. For example, if we want to reconfigure the marshalling and unmarshaling
components in all the ORBs in a distributed system, it is important to guarantee an all-or-nothing
property in the transactions. If an ORB replaces its marshalling mechanism and one of the ORBs
to which it sends requests does not change its unmarshaling mechanism, they might no longer be
able to communicate.

To support that, one could extend our infrastructure by using standard transaction mechanisms
for distributed systems [EMS91] and recent protocols for mobile agent fault-tolerance [SPZ98]. The
deployment of these mechanisms for the reconfiguration of active components is not straightforward.
It is an interesting research topic. In this case, the atomic transactions must deal with active objects
(i.e., data + code + running threads) rather than simply data, as is the case with more traditional

uses of atomic transactions such as file systems [SW91] and distributed databases [GR93].

!Depending on the components being reconfigured, it may be necessary to save the component internal state
before the configuration occurs so that it can be restored in case it is necessary to roll back to the initial state. This
can be achieved by requiring each component to implement operations for capturing and restoring its internal state
as described in Section 5.3.4.

45

Chapter 7

Application Scenarios

The work on this thesis was motivated initially by our research on the 2K operating system
[KCM™00]. During the early phases of that research, we identified proper dependence manage-
ment as a key factor in the development of robust operating system and middleware architectures.
We begin this chapter describing dynamicTAO, a fundamental part of 2K, and explaining how the
dynamicTAQ internal architecture applies the ideas defended in this thesis.

Section 7.2 focuses on a Multimedia Distribution System we developed some years ago. It
shows how we enhanced the system recently using the infrastructure for automatic configuration
and component configurators to enable dynamic reconfiguration in the occurrence of failures.

In Section 7.3, we refer to systems being developed by other researchers that are applying some

of the ideas presented in this thesis.

7.1 dynamicTAO

One of the major constituent elements of the 2K distributed operating system [KSCT98, CNM9S,
KCM00] is a reflective middleware infrastructure based on CORBA. After carefully studying
existing CORBA Object Request Brokers, we came to the conclusion that the TAO ORB [SC99]
would be the best starting point for developing this infrastructure.

TAO is a portable, flexible, extensible, and configurable ORB based on design patterns. It uses
the Strategy design pattern [GHJV95] to encapsulate different aspects of the ORB internal engine.
A configuration file is used to specify the strategies the ORB uses to implement aspects such as

concurrency, request demultiplexing, scheduling, and connection management. At ORB startup

46

time, the configuration file is parsed and the selected strategies are loaded.

TAO is primarily targeted for static hard real-time applications such as avionics systems [HLS97a].
Thus, it assumes that, once the ORB is initially configured, its strategies will remain in place until
it completes its execution. There is no support for on-the-fly reconfiguration.

On-the-fly adaptation is extremely important for a wide range of applications including those
dealing with multimedia, mobile computers, and dynamically changing environments. To support
this kind of dynamic adaptations, we developed dynamicTAO [RKC99, KRL'00], an extension of
TAO that enables on-the-fly reconfiguration of its strategies. dynamicTAO exports an interface for
loading and unloading modules into the ORB runtime, and for inspecting the ORB configuration
state. The architecture can also be used for dynamic reconfiguration of user applications running

on top of the ORB and even for reconfiguring non-CORBA applications.

7.1.1 A Reflective ORB

dynamicTAQ is our first complete implementation of a CORBA reflective ORB. As pointed out in
[SSCI7, SSCI8b], a reflective system is a system that gives a program access to its definition and
evaluation rules, and defines an interface for altering them. In an ORB, client requests represent
the “program” to be evaluated by the system, the ORB implementation represents the “evaluator”,
and “evaluation” is simply the execution of the remote method invocation. A reflective ORB makes
it possible to redefine its evaluation semantics.

dynamicTAQ allows inspection and reconfiguration of its internal engine and allows ORB and
application developers to specify reconfiguration policies inside customized subclasses of the Compo-
nentConfigurator class. It exports an interface for (1) transferring components across the distributed
system, (2) loading and unloading modules into the ORB runtime, and (3) inspecting and modifying
the ORB configuration state.

The reification of dynamicTAQO’s internal structure is achieved through a collection of compo-
nent configurators. Each process running the dynamicTAO ORB contains a component configurator
instance called DomainConfigurator. It is responsible for maintaining references to instances of
the ORB and to servants running in that process. In addition, each instance of the ORB contains

a customized component configurator called TAOConfigurator.

47

{Servanthonfigurator} { ServantZConfigurator}
A A

ConcurrencyStrategy

SchedulingStrategy
aE TAOConfigurator}
SecurityStrategy

MonitoringStrategy

1

DomainConfigurator

Figure 7.1: Reifying the dynamicTAO Structure

TAOConfigurator contains hooks to which implementations of dynamicTAQ strategies are at-
tached. Hooks work as “mounting points” where specific strategy implementations are made avail-
able to the ORB. We currently support hooks for different kinds of strategies such as Concurrency,
Security, and Monitoring. The association between hooks and component implementations can be
changed at any time, subject to safety constraints.

Figure 7.1 illustrates this reification mechanism in a process containing a single instance of the
ORB. If necessary, individual strategies can use component configurators to reify their dependencies
upon ORB instances and other strategies. These configurators may also store references to client
connections that depend on the strategies. With this information, it is possible to manage strategy
reconfiguration consistently as we explain in section 7.1.3.

The dynamicTAQO architectural framework is depicted in Figure 7.2. The Persistent Repository
stores category implementations in the local file system. It offers methods for manipulating (e.g.,
browsing, creating, deleting) categories and the implementations of each category. Once a compo-
nent implementation is stored in the local repository, it can be dynamically loaded into the process

runtime.

48

Reconfiguration
Agents

[Servanthonfigur ator]

Administration
Panel

L ~(" TAOConfigurator)

Network Broker

[DomainConfigurator]

t

Dynamic Service Configurator]

[Persistent Repositorﬁ \
[ACE_Service_Repository] ACE_Service Config

data/command
flow

Figure 7.2: dynamicTAO Components

A Network Broker receives reconfiguration requests from the network and forwards them to
the Dynamic Service Configurator. The latter contains the DomainConfigurator (shown in Fig-
ure 7.1) and supplies common operations for dynamic configuration of components at runtime.
It delegates some of its functions to specific component configurators (e.g., TAOConfigurator or a
certain ServantConfigurator).

We minimized the changes to the standard ACE/TAQO distribution by delegating some of the ba-
sic configuration tasks to components of the ACE framework such as the ACE_Service_Config (used
to process startup configuration files and manage dynamic linking) and the ACE_Service_Repository
(to manage loaded implementations) [JS97].

This architectural framework enables the development of different kinds of persistent repositories
and network brokers to interact with the Dynamic Service Configurator. Thus, it is possible to
use different naming schemes when storing category implementations and different communication
protocols for remote configuration as described below.

We built the dynamicTAO components using the ACE wrappers [Sch93| for operating system

49

services. Thus, dynamicTAO runs on the several different platforms to which ACE was ported.

7.1.2 Reconfiguration Interfaces

dynamicTAQO supports three distinct forms of reconfiguration interfaces. In general terms, they
all provide the same functionality, but each of them has characteristics that makes it more or less

appropriate for certain situations. A description of the interfaces follows.

1. The DCP Broker is a customized subclass of the Network Broker shown in Figure 7.2. It
listens on a TCP port, waiting for connection requests from remote clients. Once a connection
is established, a client can send inspection and reconfiguration commands using DCP, our
Distributed Configuration Protocol [Kon98]. This interface is particularly good for debugging
and for fast interaction with an ORB, since the user can access the configuration interface

simply by establishing a telnet connection to the DCP Broker.

2. The Reconfiguration Agent Broker is also a customized subclass of the Network Broker.

It is useful for configuring a distributed collection of ORBs as we described in Chapter 6.

3. The DynamicConfigurator is a CORBA object that exports an IDL interface with opera-
tions equivalent to those offered by the DCP protocol. It is the most convenient of the three
interfaces for programmatic interactions, since all the communication aspects are hidden by

the CORBA middleware.

We now use the DynamicConfigurator IDL specification presented in Figure 7.3 to explain the
functionality of the dynamicTAO reconfiguration interfaces!.

The DynamicConfigurator interface specifies the operations that can be performed on dynamic-
TAQ abstractions, namely, categories, implementations, hooks, and configurable components. The
first nine operations in the interface are used to inspect the dynamic structure of that domain and
retrieve information about the different abstractions. A category represents the type of a compo-
nent; each category typically contains different implementations, i.e., dynamically loadable code

stored in the Persistent Implementation Repository. For example, a category called Concurrency

'To make Figure 7.3 more clear, we omitted the exceptions that each operation can raise.

50

interface DynamicConfigurator

{

typedef sequence<string> stringlist;
typedef sequence<octet> implCode;

stringlList list_categories ();

stringlList list_implementations (in string categoryName) ;
stringlList list_loaded_implementations ()

stringlist list_domain_components ();

stringlist list_hooks (in string componentName) ;

string get_impl_info (in string implName) ;
string get_comp_info (in string componentName) ;
string get_hooked_comp (in string componentName,
in string hookName) ;
string get_latest_version (in string categoryName);

long load_implementation (in string categoryName,

in string impName,

in string params

in Configuration::Factory factory,

out Configuration::ComponentConfigurator cc);
void hook_implementation (in string loadedImpName,

in string componentName,

in string hookName) ;

void suspend_implementation (in string loadedImpName) ;

void resume_implementation (in string loadedImpName) ;

void remove_implementation (in string loadedImpName) ;

void configure_implementation (in string loadedImpName,
in string message);

void upload_implementation (in string categoryName,
in string impName,
in implCode binCode) ;
void download_implementation (in string categoryName,
inout string impName,
out implCode binCode) ;
void delete_implementation (in string categoryName,
in string impName) ;

Figure 7.3: The DynamicConfigurator Interface

51

contains the three threading models that dynamicTAO currently supports: Reactive_Strategy,
Thread Strategy, and Thread _Pool_Strategy.

Once an implementation is loaded into the system runtime, it becomes a loaded implementation
and can be associated with a logical component in the ORB domain. Finally, components have
hooks that are used to represent inter-component dependence; if a component A depends upon
component B, then this dependence is represented by attaching B to a hook in A.

load_implementation dynamically loads and starts an implementation from the persistent
repository. hook_implementation attaches it to a hook in one of the components in the domain.

The next four methods allow operations on loaded implementations. It is possible to suspend
and resume their main threads, remove them from the process, and send them component-specific
reconfiguration messages.

upload _implementation allows an external entity to send an implementation to be stored in
the local Persistent Repository, so that it can be linked to a running process and attached to a hook.
Conversely, download_implementation allows a remote entity to retrieve an implementation from
the local Persistent Repository. Finally, delete_implementation is used to delete implementations
stored at the ORB Persistent Repository.

Consider now the scenario in which a user wants to change the threading model at runtime
by using an implementation of the Concurrency strategy called Thread_Pool_Strategy. Assuming
that the user wants to start with a thread pool of size 20, the required configuration steps are the

following.

1. Load the implementation into memory:

version = 1oad_implementation("Concurrency",“Thread_Pool_Strategy","20“, 0, cc)

2. Attach the implementation to the Concurrency hook in TAO:

hook_implementation("Concurrency"+version,"TA0","Concurrency_Strategy")

After the new implementation is attached, the ORB starts using it. In section 7.1.3, we discuss
what happens if a different concurrency strategy is in use.

Figure 7.4 shows C++ code that uses the Dynamic Configurator to retrieve and print some
information about the ORB internal configuration. The code obtains a reference to the Dynamic-

Configurator object through the ORB’s resolve_initial_references() method.

52

CORBA: :0Object_var dcObj;

DynamicConfigurator_var dynConf ;
CORBA: :0RB_var orb;
orb = CORBA::0RB_init (argc, argv);

dcObj
dynConf

orb->resolve_initial_references ("DynamicConfigurator");
DynamicConfigurator::_narrow (dcObj.in ());

stringlist *1list = dynConf->list_implementations ("Concurrency");

printf ("Available concurrency strategies:");
printStringlist (list);

char *ret = dynConf->get_hooked_comp ("TAQ", "Concurrency_Strategy");

printf ("Now, using the <Js> concurrency strategy.", ret);

Figure 7.4: Inspecting the ORB Internal State

7.1.3 Consistency

Reconfiguring a running ORB while it is servicing client requests is a difficult task that requires
careful consideration. There are two major problems.

Consider the case in which dynamicTAQO receives a request for replacing one of its strategies
(So1a) by a new strategy (Spew). TAO strategies are implemented as C++ objects that communicate
through method invocations. The first problem is that, before unloading S,;4, the system must
guarantee that no one is running S,;q code and that no one is expecting to run S,g code in the
future. Otherwise, the system could crash. Thus, it is important to assure that S,;4 is only unloaded
after the system can guarantee that its code will not be called.

The second problem is that some strategies need to keep state information. When a strategy
Soid 18 being replaced by Spew, part of Syq’s internal state may need to be transfered to Sye,. Both
problems can be addressed with the help of the TAOConfigurator.

Consider, for example, the three concurrency strategies supported by dynamicTAQ: single-
threaded reactive, thread-per-connection, and thread-pool. If the user switches from the reactive
or thread-per-connection strategies to any other concurrency strategy, nothing special needs to be
done. dynamicTAO may simply load the new strategy, update the proper TAOConfigurator hook,
unload the old strategy, and continue. Old client connections will complete with the concurrency

policy dictated by the old strategy. New connections will utilize the new policy.

53

However, if one switches from the thread-pool strategy to another strategy, we must take special
care. The thread-pool strategy we developed maintains a pool of threads that is created when the
strategy is initialized. The threads are shared by all incoming connections to achieve a good level
of concurrency without having the runtime overhead of creating new threads. A problem arises
when one switches from this strategy to another strategy: the code of the strategy being replaced
cannot be immediately unloaded. This happens because, since the threads are reused, they return
to the thread-pool strategy code each time a connection finishes. This problem can be solved by
a ThreadPoolConfigurator keeping information about which threads are handling client connections
and destroying them as the connections are closed. When the last thread is destroyed the thread-
pool strategy signals that it can be unloaded.

Another problem occurs when one replaces the thread-pool strategy by a new one. There
may be several incoming connections queued in the strategy waiting for a thread to execute them.
The solution is to use the Memento pattern [GHIV95] to encapsulate the old strategy state in an
object that is passed to the new strategy. An object is used to encapsulate the queue of waiting
connections. The system simply passes this object to the new strategy, which then takes care of

the queued connections.

7.1.4 dynamicTAO and this Thesis

It is interesting to note that, although the implementation of a reflective ORB is not the main
topic of this thesis, dynamicTAQ is associated with the novel ideas presented in this thesis in many
distinct ways.

The dynamicTAOQO internal structure is reified and managed with the C++ implementation of
the component configurator framework. Qur implementation of the CORBA version of the compo-
nent configurator was developed using dynamicTAO as the underlying ORB. Finally, we developed
the Component Repository and the Automatic Configuration Service using dynamicTAO’s Dynam-
icConfigurator IDL interface depicted in Figure 7.3.

dynamicTAQO is a good example of how the component configurator framework can be used to
represent inter-component dependence and how software developers can use it to specify policies

for safe dynamic configuration.

54

7.2 Scalable Multimedia Distribution

In [KCT 98] we describe the design and implementation of a flexible multimedia distribution system
and demonstrated that it is possible to use the existing Internet to distribute low and medium band-
width multimedia to thousands of simultaneous users. Our early experiments, however, pointed
out to difficulties in managing such a large-scale system and keeping it available with an accept-
able quality of service. It showed the necessity for a better support for dynamic reconfiguration,
distribution of code updates, and provision of fault-tolerance for QoS-sensitive applications.

We addressed these problems in a new version of the multimedia distribution system [KCN0O]

built on top of the architecture presented in this thesis.

7.2.1 The Reflector

The multimedia distribution system’s key element is the Reflector. It acts as a relay, receiving
input data packets from a list of trusted sources and forwarding these packets to other Reflectors
or to programs executed by end-users (also called end-user clients). The distribution system is
composed of a network of Reflectors that collaborate with each other to distribute the multimedia
data over local-area, metropolitan-area, and wide-area networks.

The Reflector is a user-level program that, at the application level, performs activities similar
to those performed by network routers at the hardware level (which is where protocols such as IP-
Multicast [Dee89] are implemented). Since it is implemented in software, not hard-wired into the
router, the Reflector is more flexible, easy to deploy and evolve, and can be dynamically customized
to users, applications, and environments.

Reflector data packets are encoded with RTP, a user-level protocol for real-time applications
[SCFJO00] defined by the Internet Engineering Task Force (IETF). RTP packets can be transmitted
over different kinds of low-level transport protocols such as TCP/IP, UDP/IP, and IP-Multicast.

The Reflector Network topology is determined by each Reflector’s configuration. This informa-
tion specifies input and output connections, access privileges, maximum allowed number of users,
etc. It is stored in a database controlled by the Reflector administrator. Figure 7.5 depicts a
generic Reflector network that distributes two video streams in different channels. In this figure,

two capture stations send their video streams to “master” Reflectors; the streams may traverse

55

several “intermediate” Reflectors until they reach “public” Reflectors to which end-user clients can
connect and receive the video streams?. All the Reflectors in the figure are initiated with exactly
the same code. Using the Automatic Configuration Service described in Chapter 4, the system

then customizes each Reflector according to their individual requirements.

L
Public il
Intermediate Reflector — ~
:
Station Reflector L7
Public i
Reflector ~,
Intermediate \

Reflector
L
Public el
Reflector Q

Intermediate
Reflector

=
Station Intermediate

Reflector

Public
Reflector

Figure 7.5: A Reflector Network Distributing Two Video Streams

AN

7.2.2 Data Distribution Protocols

In order to support different types of inter-reflector communication protocols transparently, the
Reflector framework encapsulates the concept of a network connection into an abstract C++ class
named Connection that defines the basic interface for all types of network connections used by
the Reflector. This abstract class implements some of its own methods, but the majority of
the connection-related code is implemented by its subclasses: TCPConnection, UDPConnection,
MulticastConnection, and the like.

Figure 7.6 depicts a concrete example of a highly-heterogeneous Reflector network. In this
example, the network distributes two audio-visual streams. The first comes from a mobile camera,
mounted on a helicopter, that sends its stream to a “master” Reflector over a wireless link. This
kind of link presents a high rate of packet loss not related to congestion, which makes protocols

like TCP perform poorly [BPSK96]. Thus, it is desirable to use a protocol optimized for this

2The classification of Reflectors as “master”, “intermediate”, and “public” Reflectors is merely pedagogical, they

execute exactly the same program.

56

kind of situation like, for example, WTCP [SVSB99]|. The second stream is sent to its “master”
Reflector through a dedicated ISDN line. To optimize the bandwidth, one can use UDP as the

communication protocol since its overhead is lower than that of TCP and the link offers a low loss

— IP-Multicast/
Reflector |\ ™" |5ca) Ethernet
F T~

TCP/
TCP/ long-distance fiber link
inter-state fiber

rate.

/

— IP-Multicast/
—

~_ MBone

e
B phonedial-up
\

TCP/
transatlantic satellite link

Reflector
A

Master
Reflector

Master
Reflector

Reflector

L C
TCP/

TCP/ transatlantic satellite link
long-distance fiber link

Reflector el
. D Reflector |2~ VDP/
IP-Multicast/ UDP/ E ~— phonedial-up
MBone AN

LAN

Figure 7.6: A Heterogeneous Reflector Network

Continuing with the example, Reflector C sends its streams to Reflector D over the public
Internet through a transatlantic satellite link. Even though this is a high-bandwidth link, its loss
rate may be high, so it is more appropriate to use TCP. Reflectors B and E offer the multimedia
streams to dial-up clients over conventional phone lines; Reflector B uses TCP while Reflector E,
on the other side of the Atlantic, uses the VDP adaptive algorithm. Finally, Reflectors A and
D introduce the video streams into two distant points of the global MBone and Reflector F uses
multicast to distribute the streams in a local Ethernet network.

Selecting the appropriate protocol for each situation, the Reflector administrators improve the
quality of service offered to the end-users, optimizing the utilization of the available network band-
width and minimizing packet losses.

Most of the Reflector’s code deals with objects of type Connection and is not aware of the
Connection’s underlying implementation. The actual connection type is specified when the con-
nection is created and does not need to be known after that.

This approach allows programmers to plug in customized Connection subclasses by providing

57

their own implementation of the Open, Close, Bind, Connect, Send, and Receive methods, adding
specialized functionality.

In this manner, it is possible to incorporate, into the Reflector, Connection subclasses that
implement different transport protocols (such as the VDP QoS-aware adaptive protocol for the In-
ternet [CTCL95] and the xbind QoS-aware reservation protocol for ATM networks [CL99]). Devel-
opers also use this mechanism to implement Connection subclasses that perform various operations
on the data, such as encryption, transcoding, mixing, downsampling, and the like). Finally, one
can create composite Connection types by combining existing ones. For example, one can create
a CryptoMulticast connection type — that encrypts the data and sends them out using Multicast

— by combining a Crypto connection with a Multicast connection.

7.2.3 Experience and Lessons Learned

This technology was utilized in the live broadcast of NASA’s JPL Pathfinder mission [GCE197].
During this broadcast — which lasted for several months — more than one million live video sessions
were delivered to dozens of different countries across the globe by a network of more than 30
reflectors spread across five continents. The Reflectors ran in five different operating systems
(Solaris, Linux, Irix, FreeBSD, and Windows) and transmitted their streams over different kinds
of network links. End-users could watch the video stream simply by pointing their web browsers
to selected locations, causing their browsers to download a Java applet containing the video client.
The applet connected automatically to the reflector, received the video stream, decoded it, and
displayed it to the user in real-time.

During this broadcast, we experienced three major problems:

1. As the code had not been tested on such a large scale and on so many different platforms,
we found many programming errors both in the Reflector code and in the client applet.
Surprisingly, fixing the error was, sometimes, easier than updating the code in the dozens
of machines that formed the distributed system. The same problem occurred when a new
version of the Reflector, with added functionality, was released. System administrators had
to manually connect to dozens of machines, upload the new code, shutdown the old version,

and start the new one.

58

2. In many cases, we had to reconfigure the reflector network by dynamically changing the dis-
tribution topology, or by setting new values to the reflector configuration parameters (e.g.,
maximum number of users, number of multimedia channels, etc.). The configuration infor-
mation for the reflectors was stored in a centralized location. After updating this centralized
database, we had to connect to each of the reflectors and instruct them to download their

updated configuration. This process was tiresome and error-prone.

3. The only mechanism the Reflector provided to support fault-tolerance was to send redundant
streams from different sources to the same Reflector (see [KCT 98] for details). This mech-
anism leads to a large waste of bandwidth. The redundant streams are always transmitted

even though they are seldom used.

With this experience, we learned that a user-level Reflector system is, indeed, a powerful tool
for managing large-scale multimedia distribution. It gives Reflector administrators tight control
over the distribution, allowing for better control of the quality of service. It achieves that through
the definition of the distribution topology, the selection of appropriate communication protocols,
and the possibilities for limiting the number of clients according to the available resources.

We also learned, however, that it is important to provide better mechanisms for distributed
code updates, dynamic reconfiguration, and fault-tolerance, which motivated us to develop the

architecture described in this thesis.

7.2.4 Dynamic Configuration of QoS-Sensitive Systems

The synergistic relationships between dynamic configuration and QoS are clear. Dynamic config-
uration allows the use of the best policies for each situation. For example, a mobile computer
displaying a video clip to its user could use a protocol optimized for wireless connections (e.g.,
WTCP [SVSB99]) when the computer is using a wireless link, but dynamically reconfigure itself to
use a TCP connection when the computer is hooked to a wired Ethernet connection.

However, if the reconfiguration process itself affects the quality of service negatively, it may
not be worthwhile to do any reconfiguration at all. Going back to the example, if the dynamic
reconfiguration to the TCP connection is so expensive that the video is interrupted for several

seconds, it is better to keep using the wireless link, even when the wired link becomes available.

59

Therefore, while developing the new version of the Reflector system, our major goal was to
deploy our architecture for dependence management to support dynamic configuration and fault-

tolerance without affecting quality of service negatively.

7.2.4.1 Automatic Configuration

To solve the problem of maintaining the Reflector instances up-to-date as the code of the Reflector
program evolves, and to customize each Reflector according to its role, we used the Automatic
Configuration Service described in Chapter 4.

The first major change we had to do in the Reflector implementation to accommodate the new
design was the adoption of a component-oriented model. We reorganized the implementation of
the Reflector program, breaking it into dynamically loadable components. Surprisingly, this proved
to be not so difficult, thanks to the original object-oriented design of the Reflector that was based
on loosely coupled objects interacting via well-defined interfaces. This component-based model
facilitates the customization of the Reflector program at startup, allowing the use of the Automatic
Configuration Service to select the components that are best suited for executing the Reflector in a
given node. It also facilitates the dynamic reconfiguration of running Reflectors to adapt to changes
in the environment and to install new versions of components on-the-fly.

Figure 7.7 presents a schematic overview of the Reflector bootstrapping process in which the

Reflector configures itself with the help of our infrastructure.

Name
Service Component Repository
4 /
2
3 4
1 5 6
Source 9 m 10 Client
@ Reflector
8 ACS
7

Component
Cache

QoS-aware

:
8
=
-
&
&

Figure 7.7: Bootstrapping a Reflector

60

At startup time, each Reflector contacts the CORBA Name Service to locate the Component
Repository that is compatible with the operating system and hardware platform on which the Re-
flector is running (steps 1 and 2 in Figure 7.7). From the Component Repository, it retrieves its
specific prerequisite specification file, which may contain information about its resource require-
ments and the list of components that must be dynamically loaded before the Reflector starts its
activities.

The Automatic Configuration Service library (denoted as ACS in Figure 7.7) is linked to the
Reflector process. Using the prerequisite file fetched from the Component Repository, the ACS
requests the appropriate components from the remote repository (step 5), stores them in the local
disk (step 6)3, and dynamically loads them into memory using the dynamicTAO facilities (step 7).

Once all components are loaded, the Reflector uses the resource requirement information in
the prerequisite file to request the reservation of CPU and memory from an underlying QoS-aware
resource management service. This communication with the resource management service (step 8)
is the only part of the bootstrapping scheme that was not implemented in our prototype. QoS-
aware resource management service can be provided by systems like SMART [NL97] or the Dynamic
Soft Real-Time Scheduler (DSRT) [NhCN98]. In the latter case, DSRT can use the prerequisite
specification to perform QoS-aware admission control, negotiation, reservation, and scheduling.

Next, the Reflector registers itself with the Name Service, so that it can be easily located by
other system entities, and opens all the input and output connections using the specified protocols
(steps 9 and 10). Although our prototype reads the information about the input and output
connections from a local configuration file, it could be easily modified to retrieve this information
from a file stored in the Component Repository.

Administrators of the Reflector system can look at the available broadcast and videoconference
sessions by using a graphical user interface that interacts with the CORBA Name Service. For
example, Figure 7.8 is a screen shot that illustrates the use of this interface. It shows three
independent Reflector networks: the first called VirtualMeetingRoom that could be used for audio
and videoconferencing, possibly divided according to interest groups; the second called News could

contain several news channels; and the third called 01ympicGames could contain audio and video

3To minimize startup time and network load, the components fetched from the Component Repository may be
cached locally.

61

broadcast channels related to Olympic events.

= 2K Name Service Browser |0
NameService View Tools
@/ [Reflectorspurius.cs.uiucednCC

@ [services
@ CJ ComponentRepository
[y 5unOSisparc
[y win32i=B6
[y Linux:i6E86
@ [multimedia
© [broadcasts
& CJ VirtualMeetingRoom |l i
@ [Mews CR:Q00000000000002 334443 ad 35 -
&] OlympicSames : fEeEEE9E7 757261 74696f6e2f436fEd ;
. :

ol = N AT EC o T T T E2aid

fReflectordevius.cs.uiucedwcc
eflectordelirius.cs.uiuceduwCc
eflectorime.usp.brCC
eflectorgsycescat.urjcesiCC

Figure 7.8: A Sample Screen Shot of the Name Service GUI

The administrator can also see that there are three available component repositories for three
different kinds of architectures and can use the GUI to upload, download, and remove Reflec-
tor components from the repositories. Finally, the administrator can see that the 0lympicGames
network is composed of the five reflectors shown in the upper right-hand window. The CORBA
IOR (Interoperable Object Reference) of the Reflector at delirius.cs.uiuc.edu is shown in the

bottom right-hand window.

7.2.4.2 Fault-Tolerance

An important aspect of quality of service is that of reliability. It is difficult to ensure that the
system will work properly in the presence of network failures, node failures, software failures, and
temporary system shutdowns for maintenance. In addition, keeping the desired level of quality
of service irrespective of all these disruptive events is a major challenge for modern QoS-sensitive
systems. The Reflector architecture addresses this problem by using architecturally-aware dynamic
reconfiguration based on the component configurator framework described in Chapter 5.

In multimedia distribution, the goal with respect to fault-tolerance is to maximize the system’s
availability without relying on redundant data transmission, which leads to waste of bandwidth. To
achieve that, our prototype supports the dynamic reconfiguration of the Reflector inter-connections

when failures occur. The distributed system has knowledge of its own structure and is able to es-

62

tablish alternative routes to deliver the multimedia streams to its users. Furthermore, whenever
possible, the system performs these reconfigurations without affecting the quality of service per-

ceived by its users.

Fault-Recovery Models In order to build an alternate distribution topology, the system must
store enough information so that alternate routes can be found when failures occur. The question
is: where to maintain this information?

We considered initially a solution in which all the information regarding fault recovery would
be placed in a centralized database accessible by every Reflector. When a Reflector R; detects that
one of its inputs failed or that it is silent for too long, it would contact a configuration server with
access to the centralized database and request the address of a reflector Re from which it could
receive the missing streams. The configuration server would return this information and contact Ra,
reconfiguring it to send data to R;. The advantage of this approach is that very little information
is stored on the Reflectors, all the fault-recovery information and policies are centralized in a single
location, facilitating the manipulation of this information by a single entity: the configuration
server.

The second solution is to store fault-recovery information on the Reflectors themselves. That
is, each Reflector would store, for each set of multimedia channels, a list of alternate Reflectors
that could be used as backups. The advantage of this approach is that it does not lead to a single
point of failure and does not impose an extra load on a possibly already overloaded configuration
server. This solution may be more difficult to implement, but it tends to be more scalable.

We believe that the optimal solution to this problem is one that encompasses both models. On
the one hand, each Reflector should have some knowledge about its local surroundings and should
be able to perform reconfigurations by communicating with its immediate neighbors, without being
a burden to the centralized configuration server. On the other hand, the configuration server should
maintain global knowledge about the system topology. This centralized, global knowledge should
be used not only as backup, in case the Reflector’s localized information is not enough to keep the
system functioning, but also to perform optimizations, such as dynamic changes in the network
topology to improve the quality of service and promote load balancing.

Our architecture adopts the hybrid model described above. It distributes the knowledge through-

63

out the Reflector network and makes each Reflector aware of its dependence relationships with other
Reflectors. Thus, the Reflectors are able to make reconfiguration decisions by themselves, without
relying on a centralized entity. In addition to this, the global system topology is maintained in
the configuration service so that a Reflector administrator or an “intelligent” software module can
perform global optimizations in the distribution network.

The prototype supports fault-tolerance by using a subclass of ComponentConfigurator to rep-
resent the dependencies between Reflectors. When failures occur, the system uses the dependence
information to locate alternate routes and keep the system functioning. The ComponentConfigu-
rator implementation stores the dependencies as a list of CORBA IORs, which allows for prompt
communication no matter where the objects are located.

The subclass of ComponentConfigurator we use is called ReflectorConfigurator and contains the
policies for reshaping the network topology in case of failures and encapsulates all the code to deal
with these reconfigurations. This approach proved to be very effective in keeping a clear separation
of concerns in the Reflector code. The classes that deal with the Reflector’s normal operation
are totally unaware of the ReflectorConfigurator and of any code that deals with reconfiguration.
This clean separation also makes it easy to plug different kinds of ReflectorConfigurators to support

different reconfiguration policies.

Triggering Reconfigurations In this implementation, four kinds of events can trigger dynamic

reconfiguration:

1. A Reflector shutdown message sent by the Reflector administrator or a kill command exe-

cuted by the local system administrator.

2. Errors (or “bugs”) in the Reflector or library code that lead to a segmentation fault or bus

€ITor.
3. A reconfiguration order sent by the Reflector administrator.
4. Sudden machine crashes or network disconnections.

In the first two cases, the Reflector captures those events using signal handlers installed with

the UNIX signal function or the Windows SetConsoleCtrlHandler function. In the UNIX imple-

64

mentation, for example, the administrator can kill a Reflector by pressing Ctrl-C on the terminal
executing the Reflector, by sending a shutdown message to the reflector using a telnet connection,
or by using the kill command. The Reflector captures the events generated by Ctrl-c, kill,
segmentation faults, and bus errors by implementing signal handlers for the SIGINT, SIGTERM,
SIGSEGYV, and SIGBUS signals, respectively.

In the third case, the Reflector contacts the configuration service to retrieve its new configuration
information and reprocesses it, reconfiguring its input and output connections.

Finally, the fourth case is the only one in which it is not possible to keep the client multimedia
stream uninterrupted without relying on redundant streams to the same Reflector. The solution
in this case is to detect when the input for a given channel has failed or is silent for too long and
then locate an alternative input either by using the local list of alternatives or by contacting the
configuration server.

Our current implementation focuses on supporting dynamic reconfiguration in the presence of

the first two kinds of events. We now describe this process in more detail.

The Reconfiguration Process When an administrator (or other system entity) requests to
kill a Reflector, the system executes a special event handler called abandonReflectorNetwork ().

This handler takes the following three actions.

1. Unregisters the Reflector from the Name Service.

2. Using CORBA, sends a FINISHED event to the ReflectorConfigurators of all the sources

(inputs) of this Reflector; the event carries a list of the clients of the finishing reflector.

3. Using CORBA, sends a FINISHED event to the ReflectorConfigurators of all the clients

(outputs) of this Reflector; the event carries a list of the sources of the finishing reflector.

When a ReflectorConfigurator receives a FINISHED event from a source Reflector, it adds

all the Reflectors in the list of sources of the finishing Reflector to its list of inputs*.

4This action may lead to redundant inputs for the same channel. This can be avoided by extending the code of
the ReflectorConfigurator so that it adds all the new sources to its list of input alternatives and chooses only one
of them to be its new input.

65

Conversely, when a ReflectorConfigurator receives a FINISHED event from a client Reflector,
it adds all the Reflectors in the list of clients of the finishing Reflector to its output list.

Figure 7.9 shows a sample Reflector network where Reflector C has two inputs and two outputs.
When C is killed and the reconfiguration process described above completes, the new configuration

becomes the one in Figure 7.10.

Reflector
A

Reflector
B

.

.

Figure 7.10: The Distribution Network After Reflector C Abandons the Network

In order to be able to carry out the reconfiguration without any glitches in the multimedia
streams and without affecting the system quality of service, we had to adopt the multithreaded
solution described in section 8.2.

7.2.4.3 The Recovery Process

When a Reflector starts its execution for the first time or when it is restarted after being shutdown
for some reason, it executes an initialization process. In this process, in addition to performing the

actions described in 7.2.4.1, it performs the following three actions.

1. Registers the Reflector with the Name Service.

2. Using CORBA, sends a STARTED event to the ReflectorConfigurators of all the clients

(outputs) of this Reflector; the event carries a list of the sources of the new reflector.

66

3. Using CORBA, sends a STARTED event to the ReflectorConfigurators of all the sources

(inputs) of this Reflector; the event carries a list of the clients of the new reflector.

Upon receiving a STARTED event from a new source Reflector, the client Reflector opens a new
input connection to the new Reflector. If it is also receiving input from one of the sources of the
new Reflector, it closes that input connection as soon as the data from the new source is available.
An analogous process happens upon receiving a STARTED event from a new client Reflector.

These mechanisms allow the distribution system to recover its original topology after a faulty
reflector restarts. Therefore, if the system configuration is the one in Figure 7.10 and the Reflector
C recovers, then the configuration switches back to the one in Figure 7.9.

Note that we do not have an automatic mechanism for restarting faulty Reflectors. This requires
the administrator’s intervention, which seems to be natural since a Reflector goes out of service
either because of an administrator’s command or because of a failure in the system. In both cases,
the administrator’s attention is advisable. Alternatively, if desired, the Reflector can be added to
the list of daemons that are executed by the operating system when a machine boots, eliminating
the need for manual intervention when a machine crashes and restarts.

In section 8.2, we present the results of several experiments with the Reflector prototype. The
performance evaluation shows that, with the help of our infrastructure for dependence manage-
ment, the Reflector system is able to carry out dynamic reconfiguration of the distribution topol-
ogy without any negative impact on the quality of service perceived by end-users. This dynamic

reconfiguration provides a solid base for fault-tolerance.

7.3 Other Applications

In addition to the use cases described in section 5.4, three ongoing projects carried out by other

researchers in our group are using the products of this thesis.

1. Gaia [RCO0], a middleware infrastructure for management of active spaces will use both the
Automatic Configuration Service and component configurators to manage dynamic, heteroge-
neous devices in ubiquitous computing scenarios. As a traditional operating system manages

the resources of a machine, Gaia manages the resources in an active space. Examples of active

67

spaces include active offices and active lecture rooms enhanced with various computing and
multimedia devices. Interactions between the user and the devices in the space are managed
by a framework inspired in the Model-View-Controller paradigm [KP88]. Gaia uses compo-
nent configurators to manage the dependencies among the Model, the Controller, and the

multiple Views.

. 2KFS, the 2K distributed file service [HBCO00] will use the Automatic Configuration Service
to dynamically load components, implementing different algorithms for caching and data
transcoding. The component configurator framework will be used to manage dependencies

among the distributed 2KFS components.

. 2K€9 is a reconfigurable, component-based QoS framework which partitions the end-to-end
QoS setup process into distributed QoS compilation and runtime QoS instantiation phases
[NWX00]. Dynamic instantiation is based on dynamicTAO and the Automatic Configuration

Service.

68

Chapter 8

Experimental Results

In this chapter we present the results of experiments carried out to evaluate the performance of
the three major elements of our architecture: the Automatic Configuration Service, the component
configurator (in this case, used to support dynamic reconfiguration of the Reflector Network), and

the mobile agents infrastructure (used for reconfiguration, inspection, and code distribution).

8.1 Automatic Configuration Service

The Automatic Configuration Service is implemented as a library that can be linked to any applica-
tion. A program enhanced with this service becomes capable of fetching components from a remote
Component Repository and dynamically loading and assembling them into its local address-space.
The library requires only 157Kbytes of memory on Solaris 7, which makes it possible to use it even
on machines with limited resources such as a PalmPilot. In fact, we expect that services similar to
this will be extensively used in future mobile systems to configure software automatically according
to location and user requirements.

To evaluate the performance of the Automatic Configuration Service, we instrumented the
Reflector application described in Section 7.2 to measure the time for fetching, dynamic linking,

and configuring its constituent components.

8.1.1 Loading Multiple Components

Figure 8.1 shows the total time for the service to load from one to eight components of 19.2Kbytes

each. These experiments were carried out on two Sparc Ultra-60 machines running Solaris 7 and

69

connected by a 100Mbps Fast Ethernet network. The Component Repository was executed on one
of the machines and the Reflector with the Automatic Configuration Service on the other. Each
value is the average of five runs of the experiment. The vertical bars in the subsequent graphs and

the numbers in parentheses in Table 8.1 represent the standard deviation.

100

80 9

60 - b

40 | g

Total Time (ns)

20 - b

0 ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8

Nunmber of Conponents

Figure 8.1: Automatic Configuration Service Performance

Table 8.1 shows, in more detail, how the service spends its time when loading a single 19.2Kbyte
component. The current version of the Automatic Configuration Service fetches the prerequisites
file from the remote Component Repository and saves it to the local disk. The same is done with
the file containing the component code. Then, it uses dynamicTAO to perform the local dynamic

linking of the component into the process runtime.

‘ Action ‘ Time (ms) ‘ % of the total ‘
fetching prerequisites from Component Repository 2 (0) 8
saving prerequisites to local disk 1 (0) 4
fetching component from Component Repository 4 (0) 17
saving component to local disk 1 (0) 4
local dynamic linking 5 (0) 21
autoconf protocol additional operations 11 (0.7) 46
Total 24 (0.7) 100

Table 8.1: Discriminated Times for Loading a 19.2Kbyte Component

The table also shows the additional time spent by the service (row labeled as “autoconf protocol

additional operations”) to detect if there are more components or prerequisite files to load, to parse

70

the prerequisite file, and to reify dependencies. This overhead accounts for 46% of the total time
required to load the component, which suggests that it would be desirable to improve this part of
the service by optimizing the implementation of the SimpleResolver (see Section 4.2). We believe
that an optimized version of the SimpleResolver could lead to improvements in the order of 20% for
components of this size.

In the experiments described in this section, the component code and prerequisite files were
cached in the memory of the machine executing the Component Repository. When the Component
Repository program needs to read both files from its local disk, there is an additional overhead of

approximately 20 milliseconds.

8.1.2 Loading Components of Different Sizes

To evaluate how the time for loading a single component varies with the component size, we created
a program that generates components of different sizes. According to its command-line arguments,
this program generates C++ source code containing a given number of functions (which include
code to perform simple arithmetic operations) and local and global variables. Using this program,
we created components whose DLL sizes vary from 12 to 115 Kbytes. Figure 8.2 shows the time for
the Automatic Configuration Service to load a single component as the component size increases.

45

N
<]
T

w
a
T

w
o
T

N
al
T

Total Tiime (ns)
= N
o o
1 1

=
o
T
I

o
T
I

0 ! ! ! ! !
0 20 40 60 80 100 120

Conponent Si ze (Kbytes)

Figure 8.2: Times for Loading Components of Different Sizes

71

Figure 8.3 shows the absolute times spent in each step of the process'. We can notice that

the time spent in the item labeled “autoconf protocol” is approximately constant?. Hence, as the
component size increases, its relative importance decreases. This can be noticed in Figure 8.4,
which shows the same data in a different form. In this case, the figure shows the percentage of the

total time spent in each of the steps of the process.

45 -

40 4

354
- 504 B loading code
E 251 B saving code
E 204 Ofetching code
=

151 @ saving prereg

104 m fetching prereq

@ autoconf protocol

12 a0 a1 72 94 115
Component Size (Khytes)

Figure 8.3: Discriminated Times for Loading Components of Different Sizes

M loading code
& saving code
Ofetching code
0% 1 .
@ saving prereq
B fetching prereq

20% @ autoconf protocal

12 a0 51 72 24 115
Component Size [(Kbytes)

Figure 8.4: Discriminated Percentual Times for Loading Components of Different Sizes

!These steps are the same as those presented in Table 8.1.
2This is expected since the messages processed in this step do not carry component code and therefore are not
affected by the size of the component.

72

As the size of the component increases, the time for fetching the code from the remote repository
to the local machine becomes the dominant factor. It is important to remember that these data were
captured in a fast local network. If the access to the repository requires the use of a lower bandwidth
connection, then this step would clearly be the most important with respect to performance. This

suggests that “component caching” is an important topic for future research.

Discussion

Although there is still much room for improvements and performance optimizations in the protocols
used by the Automatic Configuration Service, the results presented here are very encouraging. They
demonstrate that it is possible to carry out automatic configuration of a distributed component-

based application within a tenth of a second, which is what we intended to prove.

8.2 Dynamic Reconfiguration Using Component Configurators

In Section 7.2.4 we explained how to use component configurators to manage dependencies and
support dynamic reconfiguration of a distributed application such as the Multimedia Distribution
System. In this section, we present experimental results showing that dependence management
using component configurators can be performed efficiently.

We conducted experiments to evaluate the performance of dynamic reconfiguration using com-
ponent configurators in the Reflector system as described in Section 7.2.4.2. In particular, we were
interested in evaluating the impact of the automatic reconfiguration of the reflector network on the
quality of the multimedia streams received by end-users. We carried out this set of experiments
on seven Sun Ultra machines® connected by a 100Mbps Fast Ethernet. As depicted in Figure 8.5,
three of these machines executed our Reflector program. Another machine executed TestServer,
a program we created to synthesize an RTP stream [SCFJ00] with bandwidth and packet rate
specified in its command line. A fifth machine executed TestClient, a program that receives the
packets from a Reflector and logs the packet arrival times into a file. The sixth machine executed

the CORBA Name Service and the last one, the Component Repository.

30ur testbed consisted of two dual-processor Sun Ultra-60 machines with 360 MHz processors and five Sun Ultra-5
machines with 333 MHz processors.

73

Reﬂ;ctor Reflgctor Reflgctor TesClient

Figure 8.5: Reconfiguration Experiment Testbed

As explained in Section 7.2.4.2, when the Reflector B goes down, the system reconfigures itself
automatically and adopts the new topology shown in Figure 8.6. When the Reflector B recovers,

the system reconfigures itself back to the topology shown in Figure 8.5.

Reﬂ:ctor

Figure 8.6: Reconfiguration when Reflector B Goes Down

We evaluate the impact of these reconfigurations on the quality of service as perceived by
end-users by using the information in the log file to compute the packet inter-arrival time at the
TestClient. The following figures plot packet inter-arrival time (in seconds) over time (in seconds).
Each experiment lasted between 15 and 18 seconds.

Figure 8.7 shows the packet inter-arrival times at our testbed client when no reconfigurations

take place. The TestServer sends an RTP/UDP stream of 1.2Mbps at 30 packets per second.

0.100

0.080
0.080
0.070
0.060
0.050
0.040
0.030 +

E
hf
|
]

Packet Inter-Arrival Time (s)

0.020
0.010

0.000 — T T T T T T T T T T T

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Real-Time (s)

Figure 8.7: No Reconfigurations. Bandwidth = 1.2Mbps, Packet Rate = 30pps

The TestServer program uses an adaptive algorithm to keep its average output bandwidth as
close as possible to the output bandwidth specified at its command line. Once every K seconds, the

program checks its output bandwidth and modifies its packet inter-transmission time to adapt to the

74

changes in its measured output bandwidth®. The packet size is fixed throughout each experiment
and it is computed by dividing the bandwidth by the packet rate.

In our first experiments, we set K = 1 and the desired packet rate to 30 packets per second. The
TestServer, then, tries to send one packet every 33.3 milliseconds. However, since the Solaris clock
tick is set to 10 milliseconds, it does not let a program sleep for exactly 33.3 milliseconds. Hence,
our adaptive program ends up sending one packet every 30 or 40 milliseconds which explains most
of the variations throughout the experiment in Figure 8.7. The small and the localized variations
(such as the one at 8.4s) are due to changes in the network and machine loads caused by other
applications.

Figure 8.8 shows the impact of reconfigurations on our first implementation of the fault-tolerance
mechanism described in Section 7.2.4.2. The continuous arrows point to the instants in which the
Reflector B is killed and the Reflector network topology switches from the configuration in Figure
8.5 to the one in Figure 8.6. The dashed arrows point to the instants in which the Reflector B

recovers and the topology switches back to the one in Figure 8.5.

0.100

0.090

0.080

0.070

0.060

0.050
AV \

0.040

T v
0.030 l

0.020

Packet Inter-Arrival Time (s)

0.010

0.000 T T T T T T T
0 2 4 6 8 10 12 14 16

———— Reflector Finished Real-Time (s)

------------- P Reflecter Recovered

Figure 8.8: Reflector Reconfigurations. Bandwidth = 1.2Mbps, Packet Rate = 30pps

One can see that when we killed the Reflector, there was a peak in the inter-arrival time at
the client. This happened because, in that implementation, as soon as the reflector received the

termination signal, it stopped forwarding packets and sent events to its neighbors announcing that

“The measurement of the output bandwidth is based on the values returned by the send system call.

75

it was going to shutdown. This caused a delay until the other reflectors were able to reconfigure
their inputs and outputs. In a wide-area network, the delays would be even larger and the quality
of service as perceived by the end-user would be degraded significantly.

We solved this problem by creating a new thread to manage the reconfiguration. While the new
thread contacts the Reflector’s sources and destinations to announce the end of its service, the old
thread continues to perform the Reflector’s normal packet-forwarding operations. The Reflector
only shuts itself down after it receives a confirmation from its neighbors that its service is no longer
needed®.

One can observe another problem in the graph of Figure 8.8; as the reflector recovers, there is
a sudden change in the packet inter-arrival time, which approaches zero for a couple of packets in
a row. This happens because the end-user receives some repeated packets that are sent both by
the “backup” connection being deactivated and the new, “recovered” connection. This problem of
duplicated packets is solved very easily by implementing a new subclass of Connection that uses
the RTP sequence number to drop repeated packets.

Figure 8.9 shows the result of running the same experiment after implementing these two im-
provements. One can see that the reconfigurations take place without affecting the quality of service
as perceived by the end-user (one can say that because there is no correlation between the arrows
in Figure 8.9 and the variations in packet inter-arrival times). Furthermore, since the old Reflector
keeps a thread performing the Reflector’s normal operations until the reconfiguration is completed,
the quality of service is not degraded even in wide-area networks where the latency to contact the
neighboring Reflectors may be large.

The lack of any correlation between the Reflector reconfigurations and the quality of service
is even more clear in Figure 8.10 that shows a similar experiment carried out in a period of high
network and machine loads. In this case, we set K to 10 so that the TestServer would keep its
transmission rate constant for longer periods.

Finally, Figure 8.11 shows one more experiment in which we used the Reflector network to
distribute an RTP stream generated by the vat audioconference tool for the MBone [SRL96]. The

acoustic perception of five users listening to the audio stream in our laboratory confirms what one

SIf this confirmation does not arrive, the Reflector administrator or a controller program still has the chance to
force the termination of the Reflector program.

76

0.100
0.080
0.080
0.070

D
o
E
= \
T 0.060
& 0.050 \ 3 \
2 0040 P x J i‘ :._.‘_.\ i .‘}_
E ot VIR
g o0 T n
[l .
* 0010
0.000 T T T T T T T T T T T T T T T T T

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Real-Time (s)
———————p Reflector Shutdown

P Refiector Recovered

Figure 8.9: Reflector Reconfigurations. Bandwidth = 1.2Mbps, Packet Rate = 30pps

0.100
0.080
0.080
0.070
0.060
0.050

Packet Inter-Arrival Time (s)

¥

[

/

0.040
0,030 #x N Ifo'f..A] Y .f.ﬂL : H 1
R . 1 0 él] l‘g + [l
0.020 __-'
0.010 2
0.000 T T T T T T T T T T T T
0 1 2 3 7 8 8 10 11 12 13 14 15 16

= Reflector Finished

- Reflectar Recavered

Real-Time (s)

7

Figure 8.10: High Network and CPU Load. Bandwidth =

1.2Mbps, Packet Rate = 30pps

sees in the graph: the reconfigurations do not affect the quality of service of the audio application.

0.100

0.090

0.080

0.070

0.060

0.050 &

0.040

Packet Inter-Arrival Time (s)

0030 i —

0.020

0.010

0.000 T T T T T T T ! !
0 2 4 i g 10 12 14 16 18
— - Reflector Shutdown Real-Time (s}

------------- # Reflector Recovered

Figure 8.11: Reflector Reconfigurations. Vat Bandwidth = 45kbps, Packet Rate = 25pps

Discussion

The experiments described in this section addressed only one of the many ways in which component
configurators can be helpful. Nevertheless, they show how the reification of dependencies can
facilitate the implementation of reliable systems with little or no performance penalty. In fact,
we believe that, in some cases, a proper dependence management can actually enable performance

optimizations [SSC98a].

8.3 Mobile Agents for Reconfiguration, Inspection, and

Code Distribution

In order to evaluate the response time and relative performance gains made possible by our mobile
agent based reconfiguration infrastructure, we established an intercontinental testbed with the
collaboration of the Departments of Computer Science at the Rey Juan Carlos University in Madrid,
Spain and at the Campinas State University in Campinas, Brazil. The testbed consisted of the

following three groups of machines.
1. 2 Sun Ultra-60 and 1 Sun Ultra-5 machines running Solaris 7 in the cs.uiuc.edu domain.

78

2. 3 Pentium-based 333MHz PCs running Linux RedHat 6.1 in the escet.urjc.es domain.
3. 3 Pentium-based 300MHz PCs running Linux RedHat 6.1 in the ic.unicamp.br domain.

The machines inside each group were connected by 100Mbps Fast Ethernet networks, while the
groups were connected among themselves through the public Internet. We executed several in-
stances of a test application running on top of dynamicTAO and injected different kinds of agents
in this network.

To avoid drastic oscillations in the available Internet bandwidth and latency, and to minimize
undesired interference, we carried out the experiments during the night®. We ran all the experiments
between 11:30PM on Tuesday November 23, 1999, and 1:00 am in the following day (USA CST).
Thus, the starting time in Brazil and Spain were 3:30 am and 6:30 am, respectively, and the Internet
traffic was relatively low. Table 8.2 shows the average bandwidth (measured by transferring a
100Kbyte file via FTP five times) and latency (measured with the ping command) between our lab

in Illinois and the remote ones.

‘ ‘ escet.urjc.es ‘ ic.unicamp.br ‘

available bandwidth | 76 Kbytes/sec | 32 Kbytes/sec
round-trip latency 170 ms 270 ms

Table 8.2: Average Bandwidth and Latency from cs.uiuc.edu

Table 8.3 shows the total round-trip time to execute five DCP inspection commands (/ist_categories,
list_implementations, list_loaded_implementations, list_domain_components, and get_comp_info) using
different techniques. In all the subsequent tables and graphs, each number is the arithmetic mean
of ten runs of each experiment and the numbers in parentheses (vertical bars in the graphs) are the

standard deviations. The first column shows the elapsed times for the execution of the agents in

| | 90RBs | 10RB |
Agents using distribution tree | 847(33)
Agents point-to-point 2127(1044) | 362(10)

Client/Server 1128(141)

Table 8.3: Elapsed Time (in ms) for the Execution of Five Different Inspection Commands

When we ran the experiments during times of high network traffic and congestion, the performance numbers
were even more in favor of our mobile agents approach.

79

9 instances of the dynamicTAO ORB, 3 in each domain. The second column shows the times for
execution in a single ORB in a remote node. The first line shows the time for agents following the
distribution tree shown in Figure 8.12(a). The second line shows the times for agents sent directly
from a single node in cs.uiuc.edu for parallel execution on the other eight nodes as shown in Fig-
ure 8.12(b). Finally, the third line shows the time for executing the same five inspection commands
by using five consecutive requests in a traditional client/server model rather than using the agent

model.

(a) Using a tree (b) Using point-to-point connections

Figure 8.12: Agent Distribution Topology

Looking at Table 8.3, we can see that by using a well-thought distribution tree, we obtained a
60% performance improvement in relation to a point-to-point distribution scheme (847 ms against
2127 ms). Using an agent containing the five commands, instead of a separate request for each
command, led to a 68% performance improvement (362 ms against 1128 ms).

To measure how the benefits of using a distribution tree as the one in Figure 8.12(a) varies with
the size of the agent, we sent a series of agents carrying the code for components to be installed in the
remote nodes. As shown in Figure 8.13, as the size of the component being uploaded increases, the
relative gain of using a distribution tree instead of point-to-point connections increases significantly.

This shows clearly the benefits of using the mobile agents infrastructure for code distribution.

80

40

T T
distribution tree
point-to-point -------

35 B

30 | o

20 E

15 i

Round-Trip Tine (s)

10 X H

Il Il
0.5 1 2 4 8 16 32 64 128 256
Component Si ze (KByt es)

Figure 8.13: Agent Uploading a New Component to Nine Nodes

Figure 8.14 shows the elapsed time for executing agents carrying from one to eight reconfigura-
tion commands.

Finally, Figure 8.15 shows the comparative performance between the agent approach and
conventional client/server requests as the number of requests increases from one to eight. The
client /server times were measured by building an application that sends the commands contained
in the agent as separate requests transmitted via TCP/IP connections. Since the overhead of
processing this kind of agent (around 1ms) is negligible compared to the latency of long distance
Internet lines, the performance of both approaches when sending a single command is roughly the
same. As we increase the number of commands in each experiment, the total completion time for
the agent barely varies while the completion time for the client/server application increases rapidly

as expected.

Discussion

Although our implementation could still be improved significantly with more tuning and opti-
mizations, these results are very encouraging. They demonstrate clearly that mobile agents can
provide extreme performance improvements for the management and reconfiguration of wide-area

distributed systems.

81

Round-Trip Tine (s)

Conpl etion Tine (s)

Tot a

1.7

1.6

15

1.4

1.3

1.2

1.1

0.9

0.8

0.7

0.6

16

1.4

1.2

0.8

0.6

0.4

0.2

T
distribution tree
point-to-point ----—---

S

=
N

3 4 5 6 7
Nurmber of Commands in Agent

Figure 8.14: Reconfiguration Agent Visiting Nine Nodes

T
agents

I client/server ------—- .
X
- X
-
1 1 i |) I I
1 2 3 4 5 6 . .

Nunmber of Conmmands

Figure 8.15: Agents Versus Conventional Client/Server

82

Chapter 9

Related Work

No other system architecture offers a more complete and integrated solution for automatic configu-
ration in heterogeneous, distributed systems than the one proposed in this thesis. To the best of our
knowledge, our work is the first to identify the lack of an explicit representation of inter-component
dependence as one of the most fundamental problems in existing computer systems.

Our architecture leverages modern technologies such as CORBA, component-based program-
ming, and mobile agents with the results of the research in operating systems and dynamic config-
uration of the previous decade.

In this section, we describe previous work in related areas, explain how they influenced our

research, and discuss the differences with our approach.

9.1 Programming Models

Our work was strongly influenced by the advances in programming languages and methodologies
for software development of the last two decades. These advances include not only the concepts of
reflection and aspect-oriented programming, described next, but also, object-orientation and design

patterns [GHJV95].

9.1.1 Reflective Programming

The idea of having a ComponentConfigurator object associated with each component is similar to the
concept of meta-objects present in reflective languages such as CLOS [KdRB91], OpenC++ [Chi95],

Iguana [GC96], and Guarana [OB99] and reflective systems such as Apertos [ILY95]. Meta-objects

83

are used to modify the object model and customize all aspects of object behavior, at compile time,
link time, or run time. In contrast, the intent of the component configurator is not to modify the
object model, but to maintain extra information about inter-component dependence. This extra
information helps the system to provide automatic configuration and fault-tolerance and offers
components the possibility of reasoning about their own dependencies.

Reflective languages and environments could be used to implement the component configurator
model. The management of dependencies could be carried out by meta-objects associated with
the relevant components. The reflective mechanisms could then be used to instrument component
creation and destruction to take care of the dependencies properly. The architecture described here
does not rely on a particular reflective language or environment. We use only standard languages
and architectures such as C++, Java, and CORBA.

In spite of the differences between our model and previous implementations of reflective systems,
we believe that component configurators are a valuable tool for implementing high-performance
reflective systems. Component configurators help realizing the following basic concepts of reflective

systems.

e Introspection of system structure is achieved by examining inter-component dependence rela-

tionships through the component configurator interface.

e Reconfiguration of system structure is achieved by manipulating the dependencies reified by

the component configurator and by adding and removing components.

e The construction of systems that can reason about themselves is achieved by customizing the
implementation of the component configurators, adding specialized code to implement specific

policies.

Unlike most existing reflective systems, in our model, the component configurator is not present
in the normal invocation path to the component or to the objects inside it. The configurator is not
activated each time the component is invoked. Normally, the component configurator code is only

executed when some meta-level operation, such as reconfiguration, is required.

84

9.1.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [KLM197] is a novel programming paradigm in which dif-
ferent aspects of a program are coded in separate subprograms. A tool called aspect weaver is used
to combine multiple aspects into a single executable program image. As noted in [Lun98], AOP
can be seen as a reflection model in which each object has multiple meta-objects (its aspects).

AOP could also be used to implement the model described in this thesis. Dependence man-
agement could be coded in a separate aspect that would be inserted in the executable program
by the aspect weaver. Another option would be to use AOP to implement complex component
configurators. Programmers would write the code to deal with the different aspects of depen-
dence management (such as fault-tolerance, dynamic reconfiguration, and adaptability) using AOP
aspects. The weaver would then be used to generate the component configurator.

AOP is still a very recent, emerging technology. The modeling of dependencies using aspects
is an open problem. It is not clear yet how to support dynamic (re)configuration of aspects. In
existing AOP platforms, executables are created off-line by the aspect weaver that mixes the code
of all the aspects, making dynamic replacement of a single aspect extremely difficult. A solution

to this problem may reside in some of the recent research in this area [BA0O).

9.2 Component Architectures

Three major component architectures are likely to be present in the software development arena
in the next few years: Enterprise JavaBeans [Ham97], ActiveX Controls [Can97, Den97], and the
CORBA Component Model (CCM) [OMG99]. They all intend to provide an infrastructure to

support the construction of complex applications from off-the-shelf components.

9.2.1 Enterprise Java Beans and Jini

Sun Microsystem’s Enterprise Java Beans specify a standard for packaging components, called JAR,
and for inspecting the interfaces exported by each component (Introspection). Java beans must be
completely composed of Java byte code, which limits the applicability of the model.

Jini is a set of mechanisms for managing dynamic environments based on Java. It provides

85

protocols to allow services to join a network and discover what services are available in this network.
It also defines standard service interfaces for leasing, transactions, and events [Wal98].

When a Jini server registers itself with the Jini lookup service, it stores a piece of Java byte
code, called proxy, in its entry in the lookup service. When a Jini-enabled client uses the lookup
service to locate the server, it receives, as a reply, a Serviceltem, which is composed by a service
ID, the code for the proxy, and a set of service attributes. The proxy is then linked into the client
address-space and is responsible for communication with the server. In this way, the communication
between the client and the server can be customized, and optimized protocols can be adopted.

This Jini mechanism for proxy distribution can be achieved in a CORBA environment by using
the Automatic Configuration Service (see Chapter 4) in conjunction with a reflective ORB such as
dynamicTAO (see section 7.1). The Automatic Configuration Service would fetch the proxy code
and dynamically link it, while dynamicTAO would use the TAO pluggable protocols framework
[SC00] to plug the proxy code into the TAO framework.

Jini is typically limited to small-scale networks and it does not address the management of
component-based applications and inter-component dependence. Due to the large memory require-
ments imposed by Java/Jini, this is not yet a viable alternative for most PDAs and embedded

devices.

9.2.2 CORBA Component Model (CCM)

The CORBA Component Model (CCM) adopted by OMG on November, 1999, specifies a standard
framework for building, packaging, and deploying CORBA components [OMG99]. Unlike our
model, which focuses on prerequisites and dynamic dependencies, the CORBA Component Model
concentrates on defining an XML vocabulary and an extension to the OMG IDL to support the
specification of component packaging, customization, and configuration. We believe that our model
and CCM complement each other and could be integrated. CCM provides a static description of
component needs and interactions while our model manages the runtime dynamics.

Although CCM was already approved by OMG, publicly available ORBs do not support it yet.

Once this happens, we intend to work towards the integration of the two models.

86

9.2.3 ActiveX Controls, COM, and DCOM

Microsoft’s ActiveX Controls architecture [Can97, Den97] also provides mechanisms for packaging,
dynamic instantiation, and inspection of the interfaces exported by COM components. Distributed
components can communicate via DCOM, which defines a protocol based on the Distributed Com-
puting Environment (DCE) RPC specification [Loc94]. The architecture is tailored to Microsoft
operating systems and very little was done to support interoperability with other platforms. As
shown in [CHY198], implementing DCOM clients and servers is clearly more complicated than
writing CORBA clients and servers. The architecture provides no support for dependence manage-

ment.

9.2.4 OpenDoc and OpenStep

OpenDoc [OHE96], promoted in the past by Apple and CI Labs, defines a compound document
infrastructure based on IBM’s SOM and CORBA. Its design influenced modern component archi-
tectures but it was abandoned in favor of Java Beans. Apple is now supporting CORBA, Java
Beans, and ActiveX in their OpenStep environment [Don97]. OpenStep is an object-oriented soft-
ware development environment that runs on top of Mach, Windows NT, Solaris, and HP-UX and

provides an interface independent of the underlying operating system.

9.3 Prerequisites

A few systems dealt with concepts similar to the prerequisites presented in section 3.2.1, thus

addressing parts of the problem of dependence management.

9.3.1 Job Control Languages

The concept of prerequisites has its origins in the Job Control Languages of the mid-1960s. The
0S/360 operating system, deployed in a wide range of IBM computers, used JCL [Flo71] to con-
trol the multiple jobs in its innovative “multiprogramming” environment. The JOB statement,
in JCL, may have a series of keyword parameters of the form <NAME=value> to specify certain

characteristics of the job. The statement

87

//Little2KJob JOB TIME=(3,45) REGION=20K PRTY=5

specifies that the job Little2KJob takes approximately 3 minutes and 45 seconds to run, requires
approximately 20 Kbytes of memory and must be executed with priority 5. Thus, the parameters
of the JOB statement can be seen as a primitive version of the “hardware prerequisites” portion of

a SPDF specification (see section 4.2.1).

9.3.2 SOS

The use of the term “prerequisites” to refer to the dependencies of operating system objects origi-
nated in the SOS operating system [SGH*89, MGLNS94] developed at INRIA, France. In the SOS
model, objects contain a list of prerequisites that must be satisfied before they are activated. Even
though the idea was promising, it was not fully explored in that project. Prerequisites were only
used to express that an object depends on the code implementing it and not much experimentation
was carried out [SGM89, Sha98|. Besides, SOS does not include a model for dynamic management

of inter-component dependence.

9.3.3 Dynamically Loadable Libraries

Modern operating systems, like Solaris, use an explicit representation of the dependencies among
shared libraries to implement dynamic linking [Sun97]. A shared library contains a list of the
pathnames of other libraries upon which it depends. The system tries to locate all the required
libraries before executing any application code.

Our approach can be seen as an extension to that, since it uses a representation of dependencies
to support dynamic loading. The difference is that our approach is able to represent dependencies
among generic components (not only shared libraries) in heterogeneous, distributed environments
and it uses this representation to support different kinds of (re)configurations (not only dynamic

linking).

9.3.4 Globus and RSL

The Globus project [FK98] provides a “computational grid” [FK99a] integrating heterogeneous

distributed resources in a single wide-area system. It supports scalable resource management based

88

on a hierarchy of resource managers similar to those of 2K [Yam00]. But, unlike 2K, Globus is
tailored to computationally-intensive applications such as large-scale simulations and teleimmersive
applications.

Globus defines an extensible Resource Specification Language (RSL) that is similar to our
SPDF. RSL [Glo00] allows Globus users to specify the executables they want to run as well as their
resource requirements and environment characteristics.

RSL could be integrated in our system by plugging an RSLParser into our Automatic Config-
uration framework. A fundamental difference between Globus and our work is that we focus on
component-based applications that are dynamically configured by assembling components fetched
from a network repository. In Globus, on the other hand, the user specifies the application to be
executed by giving the name of a single executable on the target host file system or by giving a
URL from which the executable can be fetched.

Although the Globus design includes a service for managing application code (the Globus Exe-
cutable Management service or GEM), the current implementation does not include it as a separate
service. The name of this service, however, implies that Globus views an application as a single
executable, rather than a collection of components that can be dynamically instantiated. Since
Globus is one of the most important works in this area, we hope that their system evolves to

incorporate support for dynamic component-based applications.

9.4 WYNIWYG in Operating Systems

The idea of building a small system core that could be extended in different ways depending
on user and application requirements was explored extensively by previous work on customizable
operating systems, microkernels, and exokernels. As discussed below, this research created the
basic mechanisms that enable extensions to operating systems, but it did not reach far enough to

provide a real “what you need is what you get” model as the one described in section 3.2.

9.4.1 Customizable Operating Systems

Systems like Choices [CIMR93] let administrators build a new instance of the kernel by specifying

at compile or link time which mechanisms to use in the various subsystems. System developers

89

implement a fixed set of modules from which the administrator can choose to construct a certain
instance of the kernel. Different modules contain different implementations for virtual memory, file
system, networking, and so on. In addition, users can choose to implement a new mechanism by
writing a new system module. Unfortunately, implementing a new system module requires intimate
knowledge of system internals and conventions. As a result, extending the system is not as easy as
expected.

Choices contributed very significantly to the field of operating system design and construction
as it showed how principles of object-orientation and design patterns can help to build efficient
systems more easily. But it did not address the problems of dynamic configuration or how to
express the requirements for constructing the system. The choice of which modules would compose

each instance of the kernel were left to a human administrator that edited Makefiles manually.

9.4.2 Microkernels

Mach [Lop91], SPIN [B*95], uChoices [LTC96], and L4 [HHL'97], are operating systems with a
small core, called microkernel, that runs in privileged mode. A collection of user-level processes,
running on top of this small core, support services that are traditionally provided by the kernel in
monolithic systems. Thus, administrators can configure the system by selecting different sets of
user-level services to be executed in each machine. So, even if all the machines in a network run
the same microkernel, their services can be adjusted to the requirements of their users.

Some microkernels also provide mechanisms for modifying their configuration dynamically by
adding new modules at runtime. uChoices can, for example, dynamically load a new module
written in Java into its kernel. The code is then run by a JAVA interpreter that resides in the
kernel. SPIN can load modules written in the type safe language Modula-3 and then compiled
by a trusted compiler. Synthetix [CAK'96] dynamically generates new code that is specialized to

provide improved performance for a particular situation.

9.4.3 Exokernels

The concept of exokernels, first introduced by Engler, Kaashoek and O’Toole [EKJ95, KT97] and

further extended by Ballesteros [BHK1T99, BHKC99, BK(C97], suggests that high-performance,

90

configurable operating systems can be built by implementing a minimal kernel exporting only low-
level hardware abstractions. In these systems, traditional operating system abstractions, such as
processes and files, are implemented by user-level libraries. Each application can be linked to
different libraries at runtime and, therefore, use customized system abstractions. Exokernels have

one major objective: to export the hardware resources safely.

9.4.4 Comparison with our Approach

As described above, customizable operating systems, microkernels, and exokernels supported system
configuration using low-level techniques for linking new modules into the operating system in kernel
and user space, either statically or dynamically. However, all of them lack a high-level model
for operating system configuration and reconfiguration. Although they permit the establishment
of different, customized system configurations, they do not have any model for expressing the
requirements of user and applications with respect to system modules. All the work is left to the
system administrator, who must know about all users, all applications, and have total control over
the configuration.

The model presented in this thesis is an integrated solution to the problem of configuring
operating systems. Each system module, application, and user defines its requirements explicitly.
The system processes all this information and configures the user environment automatically to
provide exactly what is needed, no less, no more.

Previous work in operating systems have not addressed a number of problems related to fault-
tolerance and dynamic reconfiguration. Using prerequisites and the ComponentConfigurator frame-

work, this thesis shows how a system can answer the following questions.

e What system modules are needed to support the user’s environment?

What system modules are needed to run a particular application?

When a system module is replaced, which other modules are affected?

e How must those other modules react?

If a system component fails, how can the system detect it and recover gracefully?

91

By answering these questions, this thesis presents a framework that helps future research efforts

to address the following questions.

e What are the consequences of reconfiguring the system?

e What is the cost of reconfiguring the system?

When (re)configuring the system, which components must be loaded to meet the required

quality of service in light of dynamic system conditions?

e When is it time to reconfigure the system?

9.5 Software Architecture

As the complexity of software increases, the design of the overall system architecture (also known
as programming in the large) becomes even more important than the choices of the individual
algorithms and data structures that are used in each component (programming in the small).
Software architecture is an emerging discipline in software engineering that aims to teach developers
to program in the large effectively.

Many of our ideas regarding how to deal with dynamic configuration extend previous work in
the field of software architecture. We now discuss some of the most important work in this area

and, in Section 9.5.4, explain how our approach differs from them.

9.5.1 Software Buses

James Purtilo’s group developed the Polylith system [Pur94] in which components interact with
each other through software buses. The major idea behind Polylith is that it would allow pro-
grammers to implement functional aspects of components separately from their interfacing aspects.
Components interface with the bus only, while Polylith provides different implementations of the
bus using different communication protocols.

Polylith can be seen as one of the precursors of OMG’s CORBA, helping programmers to inter-

connect software components written in different languages and executing them in heterogeneous

92

environments. CORBA, in turn, can be seen as a particular implementation of the software bus
concept.

Surgeon [HWP93] is a tool for building dynamically reconfigurable applications based on Polylith.
Based on module specifications and application specifications, Polygen [CP91] integrates application
modules and builds executable files. Surgeon pre-processes modules that are subject to dynamic
reconfiguration instructing Polygen about how the modules must be packaged. At execution time,
Surgeon agents, called catalysts, manage the reconfiguration process. The catalysts automate the
process of updating the bindings between a module being replaced and the modules with which it
communicates.

Surgeon works with a limited set of applications in which the modules do not need to participate
in the reconfiguration process. As identified in their research, this implies that the modules that

are safely reconfigurable using a catalyst must satisfy the following conditions.
1. The module’s state can be safely discharged during reconfiguration.
2. Modules must be able to start without receiving state from old modules.

3. There must be no synchronization between the reconfigurable module and its neighbors. For
example, modules that use synchronous calls with return values do not satisfy this condition.

Thus, modules must use asynchronous messages for communication only.

In her PhD thesis [Hof94], Christine Hofmeister extends this work presenting a framework for
dynamic reconfiguration of distributed programs with module participation [HP93]. Although this
framework does not support the degree of automation that Surgeon does, it does not require that
the component state be discharged. Instead, they apply a technique suggested by Herlihy and
Liskov, for transmission of abstract data types [HL82]. Each module is responsible for exporting
its internal state, by implementing an encode operation, and for importing state through a decode
operation. In addition, programmers must carefully design application modules so that they can
reach a stable state for reconfiguration. When a user requests a module reconfiguration, the module
continues its execution until a stable state is achieved. The entire application need not be suspended
for reconfiguration; only the affected modules are.

Aster [IB96] is an implementation of a software bus on top of CORBA. Instead of allowing

93

components to implement and use arbitrary interfaces defined with IDL, Aster components interface
with a bus written in CORBA. This bus supports only one interface which contains operations like
sendBus (out msg m) and receiveBus(in msg m). In section 9.6, we describe ongoing work on

supporting dynamic configuration in the Aster environment.

9.5.2 Architectural-Awareness

Sefika addressed the issue of architectural-awareness in the Choices operating system, emphasizing
quantitative aspects of the interaction between objects in the Choices kernel [SC95, SSC96a]. The
goal was to monitor compliance of the system with its design models [SSC96b].

The motivation of our research, however, is to extend that concept to a broader group of
software systems including, not only operating system kernels, but also system libraries, distributed
services, and user-level applications. Also, rather than concentrating on the quantitative aspects
of the interactions, our work focuses on representing dependencies among software components to

support automatic configuration, reliability, and QoS.

9.5.3 Architectural Description Languages

Architectural Description Languages (ADLs) provide a way for practitioners to define the architec-
ture of their systems using a formal notation. Thus, they can present their architectures to other
people, reason about them, and even submit the descriptions to automated tools to analyze their
consistency or generate code automatically.

ADLs evolved as an extension of Module Interconnection Languages (MILs) first defined in
1975 by DeRemer and Kron [DK76]. MIL compilers were able to build static systems by combining
different modules while ensuring system integrity by performing type-checking at compile-time.
Early MILs posed a series of restrictions to software developers, requiring that all the modules
be written in the same language, be available during system construction, and that each module
describe the other modules with which it interacts [SDZ96].

The research carried out by Kramer and Magee at the Imperial College in London provided
some of the most significant results in the area of ADLs and dynamic configuration. After earlier

work on the Conic [MKS89] and Rex [KMSD92] projects, their most recent research is based on

94

the Darwin ADL.

Darwin has been used in environments like Regis [MDK94] and CORBA [MTK97] to specify
the overall architecture of component-based applications. A Darwin specification defines all the
components of an application and the communication interactions between them. At application
start time, the middleware loads all the application components and establishes the links between
them.

UniCon [SG96, SDZ96| introduced the concept of Architectural Connectors, first class objects
that mediate the interactions between the components of a system. Components are identified
by their interfaces and connectors are identified by protocols. Applications are built as composite
components specified in the UniCon ADL. A composite component specification contains three
parts: (1) a list of components to be instantiated, (2) a description of the connections between
the components inside the composite, and (3) a binding of the external interface of the composite
with the internal configuration. Given this description, UniCon is able to build executable files and
scripts that are used to instantiate the whole application.

UniCon connectors implement various communication mechanisms such as UNIX pipes, file
I/0, and local and remote procedure calls. Developers may associate an ezpert to each connector.
The expert is a piece of executable code that is capable of building the executable code for the
connections and checking if a particular use of a connector is consistent. The experts are called by
the UniCon compiler as the application is built.

Olan [BABR96, BBB"98] is an execution environment and an architectural description language
focusing primarily on distributed applications. The ADL, called Olan Configuration Language
(OCL), is an extension of Darwin that includes two new abstractions: the connectors, as in UniCon,
and collections, that represent a dynamic set of objects that can be controlled as a group by the
configuration language.

In Olan, applications are organized as a hierarchy of components, where each component may
have a set of sub-components. A sub-component can be instantiated dynamically in three ways: (1)
at the same time as the enclosing component, (2) when the first communication request reaches the
sub-component, or (3) when an explicit instantiation request arrives. These explicit instantiation

requests are used to build dynamic groups of components that are stored in collections. Thus,

95

in contrast to traditional ADLs, where the architecture of the system is statically determined by
the ADL description, OCL provides a little more dynamism by allowing collections of components
whose contents are determined according to decisions made at runtime.

The Olan developers implemented a prototype in the Python programming language and made
experiments with simple applications, like a configurable electronic mail tool. They targeted Olan
towards rapid prototyping and, as a consequence, system performance was low. Other major draw-
backs were the lack of a graphical interface and the lack of support for dynamic reconfiguration and
dynamic replacement of components. Even with the limitations of its prototype implementation,

Olan may be, today, the most complete language for representing software architectures.

9.5.4 Comparison with our Approach

Systems based on architectural connectors like UniCon [SDZ96] and ArchStudio [OT98] and systems
based on software buses like Polylith [Pur94] separate issues concerning component functional be-
havior from component interaction. Our model goes one step further by separating inter-component
communication from inter-component dependence. Connectors and software buses require that ap-
plications be programmed to a particular communication paradigm. Unlike previous work in this
area, our model does not dictate a particular communication paradigm like connectors or buses. It
can be used in conjunction with connectors, buses, local method invocation, CORBA, Java RMI,
and other methods. As shown in our discussion about dynamicTAO (see section 7.1), the model
was applied to a legacy system without requiring any modification to its functional implementation
or to its inter-component communication mechanisms.

Communication and dependence are often intimately related. But, in many cases, the distinc-
tion between inter-component dependence and inter-component communication is beneficial. For
example, the quality of service provided by a multimedia application is greatly influenced by the
mechanisms utilized by underlying services such as virtual memory, scheduling, and memory allo-
cation (e.g., through the new operator). The interaction between the application and these services
is often implicit, i.e., no direct communication (e.g. library or system calls) takes place. Yet, if
the system infrastructure allows developers to establish and manipulate dependence relationships

between the application and these services, the application can be notified of substantial changes

96

in the state and configuration of the services that may affect its performance.

Research in software architecture and dynamic configuration generally assumes that the op-
erating system is an omnipresent, monolithic black box that can be left out of the discussion; it
concentrates on the architecture of individual applications. Previous work in this field does not
represent dependencies of application components towards system components, other applications,
or services available in the distributed environment. Our approach differs from them in the sense
that, for each component, we specify its dependencies on all the different kinds of environment
components and we maintain and use these dynamic dependencies at runtime.

Approaches based on software architecture typically rely on global, centralized knowledge of
application architecture. In contrast, our method is more decentralized and focuses on more direct
component dependencies. We believe that, rather than conflicting with the software architecture
approach, our vision complements them by reasoning about all the dependencies that may affect
reliability, performance, and quality of service.

The final solution to the problem of supporting reliable automatic (re)configuration may reside
on the combination of our model with recent work in ADLs and dynamic (re)configuration. This

is certainly an important open research problem to be investigated in the future (see chapter 10).

9.6 Dynamic Configuration

Following the early work on dynamic configuration performed by Bloom and Day [BD93] and
Hofmeister [HP93], a significant international community organized around the International Con-
ference on Configurable Distributed Systems [PCS98] has been working on the difficult problem of
dynamic configuration.

Oreizy, Taylor, and Rosenblum [ORT98, OT98] have identified the need for an explicit repre-
sentation of the system architecture in order to support consistent, dynamic reconfiguration. In
their model, components interact with each other through Connectors, which are used both for
communication and for representing the dependencies among groups of components. However, be-
cause connectors are also used for group communication (for broadcasting asynchronous messages),

the model does not make it clear whether two components linked by a connector really depend on

97

each other. It is a good idea to restrict the freedom of the application developer but, in this case,
they also restricted the expressiveness of the model.

Valérie Issarny at IRISA, France developed a Dynamic Reconfiguration Service for CORBA
[BISZ98]. In this work, a centralized Dynamic Reconfiguration Manager (DRM) maintains a repre-
sentation of the distributed system architecture, receives requests for reconfiguration, and invokes
the proper distributed components to carry out the reconfiguration. Maintaining application con-
sistency is the responsibility of the application. The infrastructure guarantees that the semantics
of the RPC is kept consistent even if components are replaced on-the-fly. Ongoing work includes
the integration of this Dynamic Reconfiguration Service in the Aster programming environment
(see 9.5.1).

Shrivastava and Wheater [SW98] are currently working on a workflow-based model for dis-
tributed applications. In their model, a scripting language [RSW98] is used to provide high-level
descriptions of workflow schemas. Schemas represent the structure of tasks in a distributed appli-
cation with respect to task composition and inter-task dependencies.

The meaning of the term “dependency” in their work is directly related to the workflow model

and differs slightly from the one we adopt. A dependency can be either

e a notification dependency (meaning that a task can only start its execution after its depen-

dency has completed its execution) or a

o dataflow dependency (meaning that a task needs to receive input data from another task

before starting its execution).

A workflow execution service coordinates the execution of the workflow and helps to guarantee
that reconfigurations will be performed in a consistent way. Each task is managed by a task
controller that handles workflow dependencies and helps support reconfiguration.

A task is modeled as having a set of input sets (analogous to our hooks) and a set of output sets
(analogous to the clients in the component configurator model). Their workflow schemas resemble
our prerequisites slightly. Their task controller resembles our component configurator.

The main difference between their model and ours is that their model mixes the representation

of data flow, coordination, and inter-component dependence. Their model is suited to expressing

98

temporal workflow dependencies among components in a certain application. It does not address
the interactions between application components and system services.

However, it is important to note that, in Shrivastava and Wheater’s model, users are able
to specify what the requirements for application tasks must be, so that reconfigurations can be
performed in a consistent way. This problem is out of the scope of our work and it could be a PhD
thesis in itself. Our framework, however, gives developers the chance to write code to take care of

consistency inside the component configurators.

9.7 Application Scenarios

Using the architecture for dependence management and automatic configuration presented in this
thesis, we were able to implement two novel applications, the multimedia distribution system and
dynamicTAQO. These applications provided original contributions to the research in their respec-
tive Computer Science fields. We now discuss previous work in these fields and emphasize our

contributions.

9.7.1 Multimedia Distribution System

Our research on the multimedia distribution system benefits from and builds on previous work on
IP-Multicast [Dee89] and the Internet MBone [Eri94, SRL96]. The MBone is a virtual network
that is layered on top of the Internet to support routing of IP-Multicast packets. It is composed of
islands that can directly support IP-Multicast (e.g., multicast LANs connected by multicast-capable
routers), linked by virtual point-to-point links called tunnels. The system described in this article
can be seen either as extending the MBone capabilities or, (since we also support IP-Multicast) as
a set of tools for managing MBone broadcasts. The MBone relies on a multicast distribution engine
that is hard-wired into the networking infrastructure, making it difficult to deploy new technologies
for distribution. Our approach not only uses user-level entities that can be replaced easily, but it
also supports dynamic reconfiguration of running systems, allowing for easy incremental evolution
of the communication mechanisms with respect to QoS, security, and reliability.

Amir, McCanne and Katz developed an active service framework [AMK98] that provides sup-

port for the dynamic instantiation of server agents (or servents), providing the desired service, in a

99

collection of distributed nodes running their host manager (HM) daemon. They used this framework
to implement a Media Gateway (MeGa) service [AMZ95]. Like our Reflector, the MeGa service
can be used to transcode multimedia streams. In fact, their research has focused on algorithms for
efficient transcoding and down-sizing and, more recently, on adaptive bandwidth allocation algo-
rithms [AMK97] and on the dynamic instantiation of media gateways between MBone sessions to
deal with heterogeneous networks. Qur research on the Reflector architecture shares some concerns
with their active service framework (which has some similarities with our Automatic Configura-
tion Service) and with their MeGa service (which could be implemented in our architecture with
customized Connection classes loaded into the Reflector). Nevertheless, we also focus on providing
scalable multimedia distribution using multiple communication protocols, reconfiguration of the
network topology to deal with failures, and scalable code distribution and dynamic reconfiguration.

Baldi, Picco, and Risso designed a videoconference system based on active networks [BPR9S].
Their proposed architecture allows clients to customize their videoconference server (or Reflector)
by uploading mobile Java code. The main difference is that, in their approach, the Reflector is
designed to run in active network routers while ours is designed as a user-level application to be
executed on networked workstations. Our infrastructure for mobile reconfiguration agents plays the
same role as the active network in their system. We chose to implement our system in C++ because
our experience shows that Java is not yet ready to provide the high-performance and predictability

that most QoS-sensitive applications require.

9.7.2 dynamicTAO

Recent research in middleware have identified a number of limitations on first-generation CORBA
implementations. This has led to ORB extensions for dealing with specific aspects such as real-
time [HLS97b], group communication [MS97], and fault-tolerance [Maf95]. The goal of dynam-
icTAQ, on the other hand, is to provide a generic infrastructure in which different kinds of cus-
tomizations can be performed using reflection.

Other research groups have addressed the problem of middleware customization by using differ-
ent approaches. The Operating Systems group at the Friedrich-Alexander University of Erlangen-

Niirnberg is developing AspectIX [HBG198], a configurable middleware architecture based on the

100

fragmented object model. AspectIX clients would interact with a fragment of the global object
(the fragment implementation) by using an interface (the fragment interface). The global object
could be configured by using “profiles” which in turn specify “aspects” that must be supported
by the fragment implementations. AspectIX Aspects can be compared to dynamicTAO category
implementations, the difference being that dynamicTAO implementations can be added on-the-fly.
The AspectIX group plans to implement a prototype of their model where each object running
within a single ORB would be able to specify its own policies and protocols. In dynamicTAO, a
similar effect could be achieved by using different ORBs inside a single process and configuring
each of the ORBs in a different way. In the LegORB model, on the other hand, the ORB can be
configured to support either of the two approaches.

Blair and others at Lancaster University has proposed a reflective architecture for next gen-
eration middleware [BCRP98, CB99, BCCDO00]. They developed a prototype using the Python
interpreted language in which the programmer is able to inspect and change the implementation at
runtime. The level of reflection is much higher than in dynamicTAO since, in their Python system,
it is possible to add or remove methods from objects and classes dynamically and even change the
class of an object at runtime. Their research has emphasized dynamic configurability through a
well-defined open binding model which allows multiple reflective levels. In contrast, our research
concentrates on a simpler reflective model, focusing on high performance. In our model, the reflec-
tive mechanisms are not included in the normal flow of control, they are only invoked when needed.
The group is now investigating (1) an efficient implementation of their reflective architecture using
lightweight components in a COM/C++ environment and (2) the use of component frameworks
[PCBO00] to manage the development of meta-interfaces in a robust and meaningful way.

COMERA [WL98| (COM Extensible Remote Architecture) provides a framework based on
COM that allows users to modify several aspects of the communication middleware at run-time. It
relies on the Custom Marshaler interface exported by COM, as well as a componentized architecture
design that allows the use of user-specified components. Like in dynamicTAO, by using COMERA,
system developers can customize the middleware according to application requirements.

Our work in dynamicTAO is an extension of previous work in reflective middleware carried out

by Ashish Singhai in our research group. Singhai developed a prototype of a reflective ORB that

101

could be customized at startup time by selecting policies for real-time invocation, fault-tolerance,
and load balancing [SSC97]. His PhD thesis presented Quarterware, a middleware construction
technique and a toolkit to help developers build customized middleware systems. Using Quarter-
ware components, one can build communication middleware systems as diverse as MPI and Java

RMI [SSC98b, Sin99].

The middleware community is starting to realize that static middleware infrastructures are
not appropriate for the highly dynamic environments of the future. A trend towards more flexible
middleware architectures could be observed in the recent IFIP/ACM Middleware conference [SCO0]
and its Workshop on Reflective Middleware [KS00].

102

Chapter 10

Future Work

As noted by a forgotten scientist, “We live on an island surrounded by a sea of ignorance. As our
island of knowledge grows, so does the shore of our ignorance”. The work on this thesis contributed
immensely for the enlargement of the shore of the author’s ignorance. In the following sections, we

discuss six topics for future research that we consider particularly important.

10.1 Libraries of Customized Component Configurators

The software infrastructure resulting from this thesis includes a few basic types of component
configurators providing some basic functions. According to our model, component developers are
respounsible for implementing application-specific (or component-specific) policies by implementing
customized subclasses of component configurators.

In future research, we intend to investigate the possibility of developing various libraries con-
taining customized versions of component configurators that can be reused in different applications
and systems. In the same way that component-based programming lets developers build complex
applications by selecting appropriate off-the-shelf components, we envision a future in which appli-
cation developers will be able to add a wide range of non-functional features, simply by selecting
appropriate versions of component configurators.

In the near future, we will study the design of libraries of component configurators supporting

reconfiguration, fault-tolerance, adaptability, scalability, and migration.

103

10.2 Automatic Prerequisite Generation and Verification

In the current implementation of our architecture, we rely on developers to write consistent pre-
requisite specifications for the components and applications they create. It would be desirable to
automate the creation of prerequisite specifications and to develop tools to verify their correctness.
This is a difficult problem that will require many years to be solved. Tools like QualProbes [LN0O]
address part of the problem by automating the creation of prerequisites specifying application
resource requirements.

The prerequisite resolver should also be extended to detect inconsistencies on the prerequisite
specifications. These inconsistencies could lead to deadlocks or infinite loops, compromising system

liveness.

10.3 Dynamic Adaptability

Although the prerequisites are primarily used for loading new components into the system and
making sure that their quality of service expectations are met, they are also useful for dynamic
adaptation in case of changes in resource availability. Resource requirements expressed in the pre-
requisites should specify ranges of acceptable service. A video-on-demand application, for example,
could specify that it requires a network bandwidth of 1.2Mbps on average, but that it may utilize
peak rates of up to 2Mbps. Finally, it could add that, even though 1.2Mbps is the desirable av-
erage bandwidth, it would still be able to function by using as little as 53Kbps by changing the
characteristics of the video stream. In that case, the application would be able to support mobile
computers moving from ATM to wireless, to modem connections, adapting to these changes dynam-
ically. Thus, prerequisites should be available to the system at runtime so that it can reorganize
its allocation of resources to fulfill better the requirements of all applications sharing the system.
An interesting topic for future research is how to use, modify, and generate prerequisite speci-

fications at runtime with minimal interference in performance.

104

10.4 Integration with ADLs

As noted in section 9.5.4, we believe that our component configurators and Architectural Descrip-
tion Languages address complementary issues. Our model is dynamic and focuses on localized
inter-component dependence, while ADLs are static and focus on global architectures. Combining
both approaches in a single model is a fascinating challenge. Since the two approaches are not

completely orthogonal to each other, their integration is non-trivial.

10.5 Component Repository

The current implementation of the 2K component repository is very simple and works as a CORBA
repository of files that can be organized in a hierarchical directory structure. As future work, it
would be important to develop a more sophisticated component repository with support for security,
version control, garbage collection, and fault-tolerance.

To provide scalability it will be required to replicate the repository and offer mechanisms to
update collections of repositories with new components. This could be achieved with the help of
our mobile agents infrastructure. In this case, it would be important to investigate policies for
maintaining the consistency among the repository replicas.

The security requirements include (1) mutual authentication between the repository and its
users, (2) controlling the access to the repository contents, and (3) digitally signing the components

stored in the repository.

10.6 Security

In networked environments, it becomes necessary to secure the configuration system from unau-
thorized access. A hostile agent that obtains access to component configurators may be able to
totally disrupt system activities. Even read-only access may be dangerous as sensitive information
about the internal structure of an institution’s system may be stolen. Therefore, it is important
to provide support for controlling the access to the configuration system. In some cases, it is
also desirable to avoid eavesdropping by encrypting the messages exchanged by components and

component configurators, for example, those containing reconfiguration events.

105

To support security in environments such as Java with RMI, it is necessary to extend the
configuration model, making it security-aware. On the other hand, in environments supporting
reflection and in CORBA, it is possible to define security policies and deploy security mechanisms
without modifications to our model.

Using the CORBA Security Service [OMG98], it is possible to add message-level interceptors
into the ORB so that data exchanged between CORBA objects are properly encrypted. In addition,
request-level interceptors can control the access to each individual operation on component config-
urators based on who is issuing the call, based on capabilities, or based on any other customized

mechanism defined by the programmer.

10.7 Concurrency

In multi-threaded and multi-process environments, we must take additional care with regard to
reliability and consistency since two threads accessing the same object concurrently may leave the
system in an inconsistent state or cause its failure. One of the ComponentConfigurator subtypes
offered by our framework uses locks to protect the configurator from simultaneous updates by
multiple clients. These locks can also be used by clients to perform a sequence of operations on a
single configurator without interference from other clients.

At the present moment, our framework does not provide any guarantee that a group of recon-
figuration actions performed in a collection of configurators will be processed as a single unit. In
a CORBA environment, one could coordinate the access to distributed configurators by using the
standard Concurrency Control Service [OMG98]. Ideally, a reconfiguration system should provide
support for grouping operations into atomic transactions satisfying the ACID properties, i.e., atom-
icity, consistency, isolation, and durability. This requires further research but it could be achieved

with the help of the CORBA Object Transaction Service [OMG9S].

106

Chapter 11

Conclusions

Dependence management is probably the most crucial problem to be resolved before operating sys-
tems and middleware are able to provide automatic configuration of component-based applications
and services. Only then will we be able to remove the burden of system configuration from users
and administrators.

In this thesis, we presented an integrated architecture for managing dependencies in component-
based distributed systems. Our experience with the architecture has been very fruitful, encour-
aging further enhancements. Future work in our and other research groups will show whether
the architecture is suitable for complex, distributed, component-based systems developed by other

programmers.

11.1 Original Contributions

The novel architecture presented in this thesis provided the first three original contributions listed
below. The deployment of the architecture in two example applications provided the two additional

contributions.

1. An Automatic Configuration Service for component-based distributed systems(described in

Chapter 4 and [KCC99)).

2. A framework for representation and management of dependencies in component-based dis-

tributed systems (described in Chapter 5 and [KC00]).

3. A mobile agent infrastructure for dynamic reconfiguration and code distribution (described

107

in Chapter 6 and [KGCM99]).
4. dynamicTAO, a CORBA-compliant reflective ORB [KRL'00].

5. A dynamically configurable, reliable multimedia distribution system [KC99, KCNOO].

11.2 Perspectives

Within the next few years, we will witness great changes in our everyday computing environments,
including higher degrees of dynamism, composability, mobility, heterogeneity, and interactions
among heterogeneous computing devices connected to global networks. Probably, the major change
will be that computers will no longer be heavy boxes on our desks, but instead, will be everywhere,
at home, at the supermarket, at the hospital, on the street, from our glasses to soda cans. One of
the few things that are clear at this moment is that conventional middleware and operating system
architectures are inadequate to support these highly dynamic, heterogeneous environments of the
future. We believe that the contributions presented on this thesis constitute a few small bricks that
will help the construction of the big building of next century’s software technology.

Above all, we scientists must not forget that, while the amazing technology of the 21% century
will certainly improve the quality of life of the top 20% wealthiest people, we live in a planet where
the large majority of the population live in deep poverty. This is a political problem that cannot
be solved by science and technology alone; but scientists must not forget that and always have in

mind that our role in society is much more than improving systems performance.

108

References

[AMKO7]

[AMKOS]

[AMZ95]

[B+95]

[BAOO]

[BABRYS]

[BBB+98]

Elan Amir, Steven McCanne, and Randy Katz. Receiver-driven Bandwidth Adapta-
tion for Light-weight Sessions. In Proceedings of the ACM Multimedia Conference,
Seattle, WA, November 1997.

Elan Amir, Steven McCanne, and Randy Katz. An Active Service Framework and
its Application to Real-time Multimedia Transcoding. In Proceedings of the ACM
SIGCOMM Conference, Vancouver, BC, September 1998.

E. Amir, S. McCanne, and H. Zhang. An Application-level Video Gateway. In Pro-
ceedings of ACM Multimedia, San Francisco, CA, November 1995.

B. N. Bershad et al. Extensibility, Safety and Performance in the SPIN Operating
System. In Proc. of the 15th SOSP. ACM, December 1995.

Lodewijk M. Bergmans and Mehmet Aksit. Aspects and Crosscutting in Layered Mid-
dleware Systems. In IFIP/ACM Middleware’2000 Workshop on Reflective Middleware,
pages 23-25, Palisades, NY, April 2000.

L. Bellissard, S. Ben Atallah, F. Boyer, and M. Riveill. Distributed Application Config-
uration. In Proceedings of the 16th International Conference on Distributed Computing

Systems, pages 579-585, Hong-Kong, May 1996. IEEE Computer Society.

R. Balter, L. Bellissard, F. Boyer, M. Riveill, and J.Y. Vion-Dury. Architecturing and
Configuring Distributed Applications with Olan. In Proc. IFIP Int. Conf. on Dis-

tributed Systems Platforms and Open Distributed Processing (Middleware’98), pages
241-256, The Lake District, UK, September 1998. Springer-Verlag.

109

[BCCDOO]

[BCRP9S]

[BD93]

[BHK99]

[BHKC99]

[BISZ98]

[BKC97]

[BKRS]

Gordon Blair, Geoff Coulson, Fabio Costa, and Hector A. Duran. On the Design
of Reflective Middleware Platforms. In IFIP/ACM Middleware’2000 Workshop on
Reflective Middleware, pages 3-5, Palisades, NY, April 2000.

Gordon Blair, Geoff Coulson, Philippe Robin, and Michael Papathomas. An Architec-
ture for Next Generation Middleware. In Proceedings of Middleware ’98, Lake District,

England, November 1998.

T. Bloom and M. Day. Reconfiguration and Module Replacemente in Argus: Theory
and Practice. IEE Software Engineering Journal, 8(2):102-108, March 1993.

Francisco J. Ballesteros, Christopher Hess, Fabio Kon, Sergio Arévalo, and Roy H.
Campbell. Object Orientation in Off++ - A Distributed Adaptable pKernel. In
ECOOP’99 Workshop on Object Orientation and Operating Systems, pages 49-53,
Lisbon, June 1999.

Francisco J. Ballesteros, Christopher Hess, Fabio Kon, and Roy H. Campbell. The
Design and Implementation of the Off++ and vOff++ pkernels. Technical Report
UIUCDCS-R-98-2086, Department of Computer Science, University of Illinois at

Urbana-Champaign, March 1999.

Christophe Bidan, Valérie Issarny, Titos Saridakis, and Apostolos Zarras. A Dynamic
Reconfiguration Service for CORBA. In Proceedings of the 4th International Confer-

ence on Configurable Distributed Systems, Annapolis, Maryland, USA, May 1998.

Francisco J. Ballesteros, Fabio Kon, and Roy H. Campbell. A Detailed Description
of Off++, a Distributed Adaptable Microkernel. Technical Report UIUCDCS-R-97-
2035, University of Illinois at Urbana-Champaign, August 1997. Also available at

http://choices.cs.uiuc.edu/2k/off++.

Jonathan Bredin, David Kotz, and Daniela Rus. Market-based Resource Control for
Mobile Agents. In Proceedings of the Second International Conference on Autonomous

Agents, pages 197-204, May 1998.

110

[Bou99al

[Bou99b)|

[BPRYS]

[BPSK96]

[CAK™96]

[Can97]

[CB9Y]

[Chig5]

[CHY 98]

Sahra Bouchenak. Capture et Restauration du Contexte d’Exécution d’un Thread
dans DI’Environnement Java. In ZIére Conférence Francaise sur les Systémes

d’Ezploitation (CFSE’1), Rennes, June 1999. ACM-SIGOPS.

Sahra Bouchenak. Pickling Threads State in the Java System. In Proceedings of the
Third European Research Seminar on Advances in Distributed Systems (ERSADS’99),

Madeira Island, April 1999.

Mario Baldi, Gian Pietro Picco, and Fulvio Risso. Designing a Videoconference System
for Active Networks. In Proceedings of the Second International Workshop on Mobile
Agents (MA’98), pages 273-284, September 1998.

Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan, and Randy Katz. A
Comparison of Mechanisms for Improving TCP Performance over Wireless Links. In

Proceedings of the ACM SIGCOMM Conference, Stanford, CA, August 1996.

Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and Jonathan Walpole. Fast
Concurrent Dynamic Linking for an Adaptive Operating System. In International
Conference on Configurable Distributed Systems (ICCDS’96), Annapolis MD, USA,
May 1996.

Saul Candib. Using ActiveX Technology to Create Programmable Applications. Mi-

crosoft Press, Redmond, 1997.

Fabio Costa and Gordon Blair. A Reflective Architecture for Middleware: Design
and Implementation. In Proceedings of the ECOOP’99 Workshop for PhD Students

in Object Oriented Systems, Lisbon, June 1999.

Shigeru Chiba. A Metaobject Protocol for C++. In Proceedings of the OOPSLA 95,
pages 285-299, October 1995.

P. E. Chung, Y. Huang, S. Yajnik, D. Liang, J. C. Shih, C. Y. Wang, and Y. M. Wang.
DCOM and CORBA Side by Side, Step By Step, and Layer by Layer. C++ Report,

January 1998.

111

[CIMR93]

[CKB*00]

[CL99]

[CNMOYS]

[CP91]

[CTCLY5]

[DCY0]

[Deb00]

[Dee89]

[Den97]

Roy Campbell, Nayeem Islam, Peter Madany, and David Raila. Designing and Imple-
menting Choices: an Object-Oriented System in C+4. Communications of the ACM,
36(9):117-136, September 1993.

Dulcineia Carvalho, Fabio Kon, Francisco Ballesteros, Manuel Roman, Roy Camp-
bell, and Dennis Mickunas. Management of execution environments in 2k. In Pro-
ceedings of the Seventh International Conference on Parallel and Distributed Systems

(ICPADS’2000). IEEE Computer Society, July 2000.

M. C. Chan and A. A. Lazar. Designing a CORBA-based High Performance Open
Programmable Signalling System for ATM Switching Platforms. IEEE Journal on

Selected Areas in Communications, 17(9), September 1999.

Roy H. Campbell, Klara Nahrstedt, and M. Dennis Mickunas. 2K: A Component-
Based Network-Centric Operating System. Project home page: http://choices.cs.

uiuc.edu/2K, 1998.

J. Callahan and James Purtilo. A Packaging System for Heterogeneous Execution

Environments. IEEE Transactions, SE-17:626-635, 1991.

Zhigang Chen, See-Mong Tan, Roy H. Campbell, and Yongcheng Li. Real Time
Video and Audio in the World Wide Web. In Fourth International World Wide Web
Conference, Boston, December 1995. Also published in World Wide Web Journal,
Volume 1 No 1, January 1996.

S. Deering and D. Cheriton. Multicast Routing in Datagram Internetworks and Ex-

tended LANS. ACM Transactions on Computer Systems, pages 85-110, May 1990.

The Debian Project. Debian linux operating system home page, 2000. http://wuw.

debian.org.
S. Deering. Host Extensions for I[P Multicasting. RFC 1112, August 1989.

Adam Denning. ActiveX Controls Inside Out. Microsoft Press, Redmond, second
edition, 1997.

112

[DK76]

[Don97]

[EKJ95]

[EMS91]

[End94]

[Eri94]

[ESST00]

[FK98]

[FK99a]

[FK99b]

Frank DeRemer and Hans H. Kron. Programming-in-the-large versus programming-

in-the-small. IEEE Transactions on Software Engineering, SE-2(2):80-86, June 1976.

Terry Donoghue. Discovering OpenStep: A Developer Tutorial. Apple Computer, Inc,

Cupertino, California, 1997.

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exokernel: An Operat-
ing System Architecture for Application-Level Resource Management. In Proceedings

of the Fifteenth Symposium on Operating Systems Principles, December 1995.

Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector, editors. CAMELOT
and AVALON: A Distributed Transaction Facility. Morgan Kaufmann Publishers,

Inc., 1991.

Markus Endler. A Language for Generic Dynamic Configuration of Distributed Pro-
grams. In Proceedings of the 12th Brazilian Symposium on Computer Networks, pages

175-187, Curitiba, May 1994.

Hans Eriksson. MBone: The Multicast Backbone. Communications of the ACM,
37(8):54-60, August 1994.

Markus Endler, Dilma M. Silva, Francisco J. S. Silva, Ricardo C. A. Rocha, and
Marcos A. Moura. SIDAM Project: Overview and Preliminary Results. In Proceed-

ings of the Workshop on Wireless Comunication, Brazilian Symposium on Computer

Networks, 2000.

I. Foster and C. Kesselman. The Globus Project: A Status Report. In Proceedings of
the IPPS/SPDP ’98 Heterogeneous Computing Workshop, pages 4-18, 1998.

Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, San Francisco, 1999.

Svend Frglund and Jari Koistinen. Quality of Service Aware Distributed Object Sys-
tems. In Proceedings of the 5th USENIX Conference on Object-Oriented Technology
and Systems (COOTS’99), pages 69-83, San Diego, May 1999.

113

[Flo71]

[Fun9g]

[GCY6]

[GCE*97]

[GHIV95]

[Glo00]

[GRO3)]

[GWTBY6]

[Ham97]

Ivan Flores. Job Control Language and File Definition. Prentice-Hall, Englewood
Cliffs, NJ, 1971.

Stefan Funfroken. Transparent Migration of Java-Based Mobile Agents — Capturing
and Reestablishing the State of Java Programs. In Proceedings of the Second Interna-
tional Workshop on Mobile Agents (MA’98), pages 26-37, September 1998.

Brendan Gowing and Vinny Cahill. Meta-Object Protocols for C++: The Iguana
Approach. In Proceedings of Reflection 96, pages 137-152, San Francisco, USA, April

1996.

M. P. Golombek, R. A. Cook, T. Economou, W. M. Folkner, A. F. Haldemann, P. H.
Kallemeyn, J. M. Knudsen, R. M. Manning, H. J. Moore, T. J. Parker, R. Rieder, J. T.
Schofield, P. H. Smith, and R. M. Vaughan. Overview of the Mars Pathfinder Mission
and Assessment of Landing Site Predictions. Science, 278(5344):1734-42, December
1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of

Object-Oriented Software. Addison-Wesley, 1995.

The Globus Project. Globus Resource Specification Language RSL v1.0, 2000. Avail-

able at http://www.globus.org/gram/rsl_specl.html.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers, San Mateo, California, 1993.

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A Secure Environment for
Untrusted Helper Applications: Confining the Wiley Hacker. In Proceedings of the
USENIX Security Symposium, July 1996.

Graham Hamilton. JavaBeans specification. Sun Microsystems, 1997. Available at

http://java.sun.com/beans/docs.

114

[HBCOO]

[HBG*98]

[HHL*+97]

[HL82]

[HLS97a]

[HLS97b]

[Hof94]

[Hoh98|

[HP93]

Christopher K. Hess, Francisco J. Ballesteros, and Roy H. Campbell. An Adaptable
Distributed File Service. In Proceedings of the ECOOP PhD Workshop on Object
Oriented Systems (PHDOOS’00), Cannes, France, June 2000.

F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckmeier. Aspec-
tIX: A Middleware for Aspect-Oriented Programming. In Object-Oriented Technology,
ECOOP’98 Workshop Reader, LNCS 1543, pages 426-427. Springer-Verlag, 1998.

Hermann Hértig, Michael Hohmuth, Jochen Liedtke, Sebastian Schonberg, and Jean
Wolter. The Performance of u-Kernel-Based Systems. In Proceedings of the 16th

Symposium on Operating Systems Principles, Saint Malo, France, October 1997. ACM.

M. Herlihy and B. Liskov. A Value Transmission Method for Abstract Data Types.

ACM Transactions on Programming Languages and Systems, 2:527-551, 1982.

Timothy Harrison, David Levine, and Douglas C. Schmidt. The Design and Perfor-
mance of a Real-time CORBA Object Event Service. In Proceedings of OOPSLA 97,

Atlanta, Georgia, October 1997.

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design and
Performance of a Real-time CORBA Object Event Service. In Proceedings of the
OOPSLA. ACM, October 1997.

Christine R. Hofmeister. Dynamic Reconfiguration of Distributed Applications. PhD
thesis, University of Maryland, Department of Computer Science, January 1994. Tech-
nical Report CS-TR-3210.

Fritz Hohl. Time Limited Blackbox Security: Protecting Mobile Agents from Malicious
Hosts. In G. Vigna, editor, Mobile Agents and Security, volume LNCS 1419, pages
92-113. Springer-Verlag, 1998.

Christine Hofmeister and James M. Purtilo. Dynamic Reconfiguration in Distributed
Systems: Adapting Software Modules for Replacement. In Proceedings of the 13th In-
ternational Conference on Distributed Computing Systems, pages 101-110, Pittsburgh,
Pennsylvania, USA, 1993.

115

[HWP93]

[1B96]

[ILY95]

[Iye99]

[7595]

[7597]

[K+97]

[KC99]

[KCO0]

Christine Hofmeister, E. White, and James M. Purtilo. SURGEON: A Packager
for Dynamically Reconfigurable Distributed Applications. IEE Software Engineering
Journal, 8(2):95-101, March 1993.

Valérie Issarny and Christophe Bidan. Aster: A Corba-Based Software Interconnec-
tion System Supporting Distributed System Customization. In Proceedings of the 3rd
International Conference on Configurable Distributed Systems (CDS’96), Annapolis,

Maryland, USA, 1996.

Jun-ichiro Itoh, Rodger Lea, and Yasuhiko Yokote. Using Meta-objects to Support
Optimization in the Apertos Operating System. In USENIX Conference on Object-
Oriented Technologies (COOTS), June 1995.

Arjun Chandrasekar Iyer. Persistent Object Service Framework Using Component
Configuration Model. Master’s thesis, Department of Computer Science, University

of Illinois at Urbana-Champaign, July 1999.

Eric Jul and Bjarne Steensgaard. Object and Native Code Thread Mobility among
Heterogeneous Computers. In Proceedings of the 15th ACM SOSP), Copper Mountain,
Colorado, December 1995.

Prashant Jain and Douglas C. Schmidt. Dynamically Configuring Communication

Services with the Service Configuration Pattern. C++ Report, 9(6), June 1997.

M. Frans Kaashoek et al. Application Performance and Flexibility on Exokernel Sys-
tems. In Proc. 16th SOSP, Saint Malo, France, October 1997. ACM.

Fabio Kon and Roy Campbell. A Framework for Dynamically Configurable Multimedia
Distribution. In Proceedings of the ECOOP’99 Workshop for PhD Students in Object
Oriented Systems, pages 118-127, Lisbon, June 1999.

Fabio Kon and Roy H. Campbell. Dependence Management in Component-Based
Distributed Systems. IEEE Concurrency, 8(1):26-36, January-March 2000.

116

[KCC9]

[KCM*99]

[KCM*00]

[KCNOO]

[KCS+99]

[KCT+98]

[KdRB91]

[KG99]

Fabio Kon, Dulcineia Carvalho, and Roy Campbell. Automatic Configuration in the
2K Operating System. In Proceedings of the ECOOP’99 Workshop on Object Orien-

tation and Operating Systems, pages 10-14, Lisbon, June 1999.

Fabio Kon, Roy H. Campbell, M. Dennis Mickunas, Klara Nahrstedt, and Francisco J.
Ballesteros. 2K: A Distributed Operating System for Heterogeneous Environments.
Technical Report UITUCDCS-R-99-2132, Department of Computer Science, University

of llinois at Urbana-Champaign, December 1999.

Fabio Kon, Roy H. Campbell, M. Dennis Mickunas, Klara Nahrstedt, and Francisco J.
Ballesteros. 2K: A Distributed Operating System for Dynamic Heterogeneous Environ-

ments. In Proceedings of the 9th IEEE International Symposium on High Performance
Distributed Computing (HPDC"9), Pittsburgh, August 2000.

Fabio Kon, Roy H. Campbell, and Klara Nahrstedt. Using Dynamic Configuration
to Manage A Scalable Multimedia Distribution System. Computer Communication
Journal (Special Issue on QoS-Sensitive Distributed Systems and Applications), Fall
2000.

Fabio Kon, Roy H. Campbell, Balaji Srinivasan, Ramesh Chandra, and Arun
Viswanathan. Dynamic Reconfiguration of Scalable Internet Systems with Mobile
Agents. Technical Report UITUCDCS-R-99-2105, Department of Computer Science,

University of Illinois at Urbana-Champaign, March 1999.

Fabio Kon, Roy H. Campbell, See-Mong Tan, Miguel Valdez, Zhigang Chen, and
Jim Wong. A Component-Based Architecture for Scalable Distributed Multimedia. In

Proceedings of the 14th International Conference on Advanced Science and Technology

(ICAST’98), pages 121-135, Lucent Technologies, Naperville, April 1998.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

David Kotz and Robert S. Gray. Mobile Agents and the Future of the Internet. ACM
Operating Systems Review, 33(3):7-13, July 1999.

117

[KGA*00]

[KGCM99)

[KLM*97]

[KMSD92]

[Kon98]

[KP88]

[Kra90]

Fabio Kon, Binny Gill, Manish Anand, Roy H. Campbell, and M. Dennis Mickunas.
Secure Dynamic Reconfiguration of Scalable CORBA Systems with Mobile Agents.

In Proceedings of the IEEE Joint Symposium on Agent Systems and Applications /
Mobile Agents (ASA/MA’2000), Zurich, September 2000.

Fabio Kon, Binny Gill, Roy H. Campbell, and M. Dennis Mickunas. Secure Dy-
namic Reconfiguration of Scalable CORBA Systems with Mobile Agents. Technical
Report UIUCDCS-R-99-2131, Department of Computer Science, University of Illinois

at Urbana-Champaign, December 1999.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP),
Finland, June 1997. Also in Springer-Verlag LNCS 1241.

J. Kramer, J. Magee, M. Sloman, and N. Dulay. Configuring Object-based Distributed

Programs in REX. IEE Software Engineering Journal, 7(2), 1992.

Fabio Kon. Distributed Configuration Protocol. Project home page: http://

choices.cs.uiuc.edu/2k/DCP, June 1998.

Glen E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-View-
Controller Paradigm in Smalltalk-80. Journal of Object-Oriented Programming, pages
26-49, 1988.

Jeff Kramer. Configuration Programming — a Framework for the Development of Dis-
tributed Systems. In Proceedings of the IEEE International Conference on Computer

Systems and Software Engineering, pages 374-384, Tel Aviv, May 1990.

118

[KRL*00]

[KSO00]

[KSC+98]

[LBS98]

[LNOO]

[Loc94]

[Lop91]

Fabio Kon, Manuel Romén, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio
Magalhaes, and Roy H. Campbell. Monitoring, Security, and Dynamic Configuration
with the dynamicTAO Reflective ORB. In Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware’2000), number 1795 in LNCS, pages 121-143, New York, April 2000.

Springer-Verlag.

Fabio Kon and Katia Barbosa Saikoski, editors. IFIP/ACM Middleware’2000 Work-
shop on Reflective Middleware, New York, April 2000. Gordon Blair and Roy Campbell

(co-chairs).

Fabio Kon, Ashish Singhai, Roy H. Campbell, Dulcineia Carvalho, Robert Moore,
and Francisco J. Ballesteros. 2K: A Reflective, Component-Based Operating System
for Rapidly Changing Environments. In ECOOP’98 Workshop on Reflective Object-

Oriented Programming and Systems, Brussels, Belgium, July 1998.

J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky, D. A. Karr, R. Vanegas,
and K. R. Anderson. QoS Aspect Languages and Their Runtime Integration. In
Proceedings of the Fourth Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR98), Pittsburgh, Pennsylvania, May 1998.

Baochun Li and Klara Nahrstedt. QualProbes: Middleware QoS Profiling Services
for Configuring Adaptive Applications. In Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware’2000), number 1795 in LNCS, pages 256-272, New York, April 2000.

Springer-Verlag.

H. W. Lockhart Jr. OSF DCFE Guide to Developing Distributed Applications. McGraw-
Hill, Inc., New York, 1994.

Keith Lopere. Mach 3 kernel principles. Open Software Foundation, 1991.

119

[LTC96]

[Lun9g]

[Maf95]

[MB+99]

[MDK94]

[ME9S]

[MG99]

[MGLNS94]

[MKS89]

[MS97]

W. S. Liao, S. Tan, and R. H. Campbell. Fine-grained, Dynamic User Customization
of Operating Systems. In Proc. 5th Int. Workshop on Object-Orientation in Operating

Systems, pages 62—-66, Seattle, October 1996.

Charlotte Pii Lunao. Is Composition of Metaobjects = Aspect-Oriented Programming.

In ECOOP Aspect-Oriented Programming Workshop, Brussels, July 1998.

Silvano Maffeis. Adding Group Communication and Fault-Tolerance to CORBA. In
Proceedings of the 1995 USENIX Conference on Object-Oriented Technologies. The
USENIX Association, June 1995.

Dejan Milojicic, Bill Bolosky, et al. Operating Systems — Now and in the Future.
IEEE Concurrency, 7(1):12-21, January-March 1999.

Jeff Magee, Naranker Dulay, and Jeff Kramer. Regis: A Constructive Development En-
vironment for Distributed Programs. IEE/IOP/BCS Distributed Systems Engineering
Journal, 1(1):37-47, 1994.

David MacKenzie and Ben Elliston. Autoconf - Creating Automatic Configuration

Scripts. Free Software Foundation, December 1998. edition 2.13.

K. Moazami-Goudarzi. Consistency Preserving Dynamic Reconfiguration of Dis-

tributed Systems. PhD thesis, Imperial College London, March 1999.

Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro. Frag-
mented Objects for Distributed Abstractions. In T. L. Casavant and M. Singhal, ed-
itors, Readings in Distributed Computing Systems, pages 170-186. IEEE Computer

Society Press, July 1994.

J. Magee, J. Kramer, and M. Solman. Constructing Distributed Systems in Conic.

IEEE Transactions on Software Engineering, 15(6):663—-675, 1989.

Silvano Maffeis and Douglas C. Schmidt. Constructing Reliable Distributed Commu-
nication Systems with CORBA. IEEE Communications Magazine, 14(2), February
1997.

120

[MTK97]

[NhCNOS]

[NL97]

[NWXO00]

[OBYY]

[Obr98]

[OHE96]

[OMG8]

[OMG99]

Jeff Magee, Andrew Tseng, and Jeff Kramer. Composing Distributed Objects in
CORBA. In Proceeding of the 3rd International Symposium on Autonomous Decen-
tralized Systems (ISADS’97), Berlin, April 1997.

Klara Nahrstedt, Hao hua Chu, and Srinivas Narayan. QoS-aware Resource Manage-
ment for Distributed Multimedia Applications. Journal of High-Speed Networking,
Special Issue on Multimedia Networking, 7:227-255, 1998.

J. Nieh and M. S. Lam. The Design, Implementation and Evaluation of SMART: A
Scheduler for Multimedia Applications. In Proceedings of the Sizteenth Symposium on

Operating Systems Principles, Saint Malo, France, October 1997. ACM.

Klara Nahrstedt, Duangdao Wichadakul, and Dongyan Xu. Distributed QoS Com-
pilation and Runtime Instantiation. In Proceedings of the IEEE/IFIP International
Workshop on QoS (IWQoS’2000), Pittsburgh, June 2000.

Alexandre Oliva and Luiz Eduardo Buzato. The Design and Implementation of
Guarani. In Proc. 5th USENIX Conference on Object-Oriented Technologies and

Systems (COOTS’99), pages 203-216, San Diego, CA, May 1999.

Katia Obraczka. Multicast Transport Mechanisms: A Survey and Taxonomy. [FEE

Communications Magazine, January 1998.

Robert Orfali, Dan Harkey, and Jeri Edwards. The FEssential Distributed Objects
Survival Guide. John Wiley & Sons, inc, 1996.

OMG. CORBAservices: Common Object Services Specification. Object Management
Group, Framingham, MA, 1998. OMG Document 98-12-09.

OMG. CORBA Components. Object Management Group, Framingham, MA, 1999.
OMG Document orbos/99-07-01.

121

[ORTYS]

[OT98]

[PCBO00]

[PCS98]

[Pur94]

[RC00]

[RKC99]

[RMKCO00]

[RS98]

Peyman Oreizy, David S. Rosenblum, and Richard N. Taylor. On the Role of Connec-
tors in Modeling and Implementing Software Architectures. Technical Report UCI-
1CS-98-04, Department of Information and Computer Science, University of California,

Irvine, February 1998.

Peyman Oreizy and Richard N. Taylor. On the Role of Software Architectures in
Runtime System Reconfiguration. In Proceedings of the 4th International Conference

on Configurable Distributed Systems (CDS’98), Annapolis, Maryland, USA, May 1998.

Nikos Parlavantzas, Geoff Coulson, and Gordon Blair. Applying Component Frame-
works to Develop Flexible Middleware. In IFIP/ACM Middleware’2000 Workshop on
Reflective Middleware, pages 67, Palisades, NY, April 2000.

Jim Purtilo, Robert Cole, and Rick Schlichting, editors. Fourth International Confer-

ence on Configurable Distributed Systems. IEEE, May 1998.

James Purtilo. The Polylith Software Bus. ACM Transactions on Programming Lan-

guages and Systems, 16(1):151-174, January 1994.

Manuel Roméan and Roy H. Campbell. Gaia: An Operating System to Enable Active
Spaces, 2000. Submitted to the 9th ACM SIGOPS European Workshop.

Manuel Roméan, Fabio Kon, and Roy H. Campbell. Design and Implementation of
Runtime Reflection in Communication Middleware: the dynamicTAO Case. In Pro-
ceedings of the ICDCS’99 Workshop on Middleware, pages 122-127, Austin, TX, June
1999.

Manuel Roman, Dennis Mickunas, Fabio Kon, and Roy H. Campbell. LegORB and
Ubiquitous CORBA. In Proceedings of the IFIP/ACM Middleware’2000 Workshop on
Reflective Middleware, pages 1-2, Palisades, NY, April 2000.

James Riordan and Bruce Schneier. Environmental Key Generation Towards Clueless
Agents. In G. Vigna, editor, Mobile Agents and Security, volume LNCS 1419, pages
15-24. Springer-Verlag, 1998.

122

[RSWOS]

[SC95]

[SC99]

[SC00]

[SCFJ00]

[Sch93]

[SDZ96]

[SGO6]

[SGE98]

F. Ranno, S. K. Shrivastava, and S. M. Wheater. A Language for Specifying the Com-
position of Reliable Distributed Applications. In Proceeding of the 18th International
Conference on Distributed Computing Systems (ICDCS ’98), Amsterdam, May 1998.

Mohlalefi Sefika and Roy H. Campbell. An Open Visual Model for Object-Oriented
Operating Systems. In Fourth International Workshop on Object-Orientation in Op-

erating Systems, Lund, Sweden, August 1995. IEEE Computer Society Press.

Douglas C. Schmidt and Chris Cleeland. Applying Patterns to Develop Extensible
ORB Middleware. IEEE Communications Magazine Special Issue on Design Patterns,
37(4):54-63, May 1999.

Joseph Sventek and Geoffrey Coulson, editors. Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms and Open Distributed Processing

(Middleware’2000), number 1795 in LNCS, New York, April 2000. Springer-Verlag,.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol

for Real-Time Applications. Internet Draft, revision of RFC 1889, January 2000.

Douglas C. Schmidt. The ADAPTIVE Communication Environment. In Proceedings

of the Sun User Group Conference, San Jose, California, December 1993.

Mary Shaw, R. DeLine, and G. Zelesnik. Abstractions and Implementations for Ar-
chitectural Connections. In Proceedings of the 3rd International Conference on Con-

figurable Distributed Systems (CDS’96), Annapolis, Maryland, USA, May 1996.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice Hall, 1996.

Dilma Menezes da Silva, Marco Dimas Gubitoso, and Markus Endler. Sistemas de
Informagao Distribuidos para Agentes Mdéveis. In Proceedings of the XXV Integrated
Seminars in Software and Hardware (SEMISH’98), pages 125-140, Belo Horizonte,
Brazil, August 1998. SBC.

123

[SGH*89]

[SGMSY]

[Sha9g]

[Sin99)]

[Smi84]

[SPZ9S8]

[SRLO6]

[SSC96a]

[SSC96b]

Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruffin, and
Céline Valot. SOS: An Object-Oriented Operating System — Assessment and Per-

spectives. Computing Systems, 2(4):287-338, December 1989.

Marc Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and Migration for
C++ Objects. In Stephen Cook, editor, ECOOP’89, Proc. of the Third European Conf.
on Object-Oriented Programming, British Computer Society Workshop Series, pages
191-204, Nottingham (GB), July 1989. The British Computer Society, Cambridge

University Society.
Marc Shapiro. Personal communication, July 1998.

Ashish Singhai. Quarterware: A Middleware Toolkit of Software RISC Compo-
nents. PhD thesis, Department of Computer Science, University of Illinois at Urbana-

Champaign, July 1999.

Brian C. Smith. Reflection and Semantics in LISP. In Proceedings of the 11th Annual
ACM Symposium on Principles of Programming Languages, pages 23-35, January
1984.

Flavio Assis Silva and Radu Popescu-Zeletin. An Approach for Providing Mobile
Agent Fault Tolerance. In Proceedings of the Second International Workshop on Mobile
Agents (MA’98), pages 14-25, September 1998.

Kevin Savetz, Neil Randall, and Yves Lepage. MBone: multicasting tomorrow’s In-

ternet. IDG Books, Foster City, CA, 1996.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Architecture-Oriented Visual-
ization. In Proceedings of the Conference on Object-Oriented Programming Systems,

Languages and Applications(OOPSLA’96), 1996.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring Compliance of a
Software System With Its High-Level Design Models. In 18th International Conference

on Software Engineering, Berlin, Germany, March 25-26 1996.

124

[SSCO7]

[SSC98a]

[SSCO8b]

[Sun97]

[SVSBYY]

[SWO1]

[SWos]

[VB99]

[Vig98]

Ashish Singhai, Aamod Sane, and Roy Campbell. Reflective ORBs: Supporting Ro-
bust Time-Critical Distribution. In Proceedings of the ECOOP’97 Workshop on Reflec-
tive Real-Time Object-Oriented Systems, pages 55—61, Finland, June 1997. ECOOP’97
Workshop Reader, LNCS 1357.

Aamod Sane, Ashish Singhai, and Roy Campbell. End-to-End Considerations in
Framework Design. In Proceedings of the 12th Furopean Conference on Object-
Oriented Programming (ECOOP), July 1998.

Ashish Singhai, Aamod Sane, and Roy Campbell. Quarterware for Middleware. In
Proc. 18th International Conference on Distributed Computing Systems (ICDCS),
pages 192-201. IEEE, May 1998.

Sun Microsystems. Linker and Libraries, 1997. On-line document available at http:

//docs.sun.com.

P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan. WTCP: A Reliable
Transport Protocol for Wireless Wide-Area Networks. In Proceedings of ACM Mobi-
com, Seattle, WA, August 1999.

Frank Schmuck and Jim Wyllie. Experience with Transactions in QuickSilver. Pro-
ceedings of the 13th ACM Symposium on Operating System Principles, pages 239-53,
1991.

S. K. Shrivastava and S. M. Wheater. Architectural Support for Dynamic Reconfigu-
ration of Large Scale Distributed Applications. In Proceeding of the 4th International
Conference on Configurable Distributed Systems (CDS’98), Annapolis, Maryland, May

1998.

Jan Vitek and Ciaran Bryce. The JavaSeal Mobile Agent Kernel. In Proceedings
of the First International Symposium on Agent Systems and Applications and Third
International Symposium on Mobile Agents (ASA/MA’99), October 1999.

Giovanni Vigna, editor. Mobile Agents and Security, volume 1419 of Lecture Notes in

Computer Science. Springer-Verlag, 1998.

125

[Wal9s]

[Wei92]

[WL9S]

[WSA*95]

[XWNOO]

[Yam00]

[Yel95]

Jim Waldo. Jini Architecture Overview. Available at http://java.sun.com/

products/jini/whitepapers, 1998.

Mark Weiser. The Computer for the 21st Century. Scientific American, 265(3):94-104,

September 1992.

Y. M. Wang and Woei-Jyh Lee. COMERA: COM Extensible Remoting Architecture.
In Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS’98), April 1998.

Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Petersen, David Gold-
berg, John R. Ellis, and Mark Weiser. An Overview of the ParcTab Ubiquitous
Computing Experiment. IEEE Personal Communications, pages 28-43, December

1995.

Dongyan Xu, Duangdao Wichadakul, and Klara Nahrstedt. Multimedia Service Con-
figuration and Reservation in Heterogeneous Environments. In Proceedings of the 20th
International Conference on Distributed Computing Systems (ICDCS’2000), Taipei,

Taiwan, April 2000.

Tomonori Yamane. The Design and Implementation of the 2K Resource Management
Service. Master’s thesis, Department of Computer Science, University of Illinois at

Urbana-Champaign, February 2000.

Frank Yellin. Low-level Security in Java. In Fourth International World Wide Web

Conference, Boston, December 1995.

126

Vita

Fabio Kon was born in Sao Paulo, Brazil on October 15, 1969. He received BS and MS degrees
in Computer Science from the University of Sdo Paulo and a BA degree in Music (Percussion)
from the Sao Paulo State University. His research interests include Distributed Operating Systems,
Reflective Middleware, Mobile Agents, Multimedia, and Computer Music. He has published over
30 papers on these topics.

Fabio has developed SODA, a consistent distributed file system based on leases; MAX Annealing,
a tool for algorithmic musical composition; a scalable multimedia distribution system; dynamic-
TAQ, a dynamically configurable reflective ORB, and a framework for automatic configuration of
component-based distributed systems.

During the course of his PhD, Fabio was seen many times playing the vibraphone with the
Parkland Jazz Big Band and holding a pandeiro in the Corcovado choro ensemble.

After a period of post-doctoral research at the University of Illinois, Fabio is moving back to
Sao Paulo, where he will continue his research in the Department of Computer Science at the
University of Sdo Paulo. His home pages are http://choices.cs.uiuc.edu/f-kon and http:

//www.ime.usp.br/ kon.

127

Index

active spaces, 1, 67
adaptation, 9, 47, 104
ADL, 6, 94-97, 105
agents, 11, 17-18, 38—45, 100
experiments, 78-81
AOP, 85, 101
Architectural Description Languages, see ADL
architectural-awareness, 3, 94
architecture, 11
Aspect Oriented Programming, see AOP
Aster, 93, 98
atomicity, 44-45
attributes, see dependency attributes
autoconf, 5
automatic configuration, 5, 12, 17, 60, 73, 83,
84, 86, 100
experiments, 69
service, 19-23

CCM, 86
chess, 37
Choices, 89
COM, 87
component configurator, 15-17, 22, 24—38,
47, 62, 84, 98, 103
C++, 26
CORBA, 30
customization, 32
experiments, 73
future work, 103
Java, 28
use cases, 36
component repository, 14, 20, 54, 61, 69, 70,
73
future work, 105
configuration programming, 25
Conic, 94
connectors, 6, 95
consistency, 8, 35, 37, 43, 48, 53, 94, 98, 99
contributions, 3, 11, 107

128

CORBA Component Model, see CCM

Darwin, 6, 95

DCOM, 87

DCP, 39, 40, 42, 50, 79

dependence management, 3, 5—10, 27, 64, 96

overhead, 37

dependency attributes, 34-35

DLLs, 88

Doctor, 44

DSRT, 22, 61

dynamic (re)configuration, 3, 7, 11, 38, 59,
97-99

dynamicTAO, 46—54, 100-102

embedded systems, 1
environments, 37
exokernels, 90

fault-tolerance, 8, 43, 59, 62-67, 100

Gaia, 67
Globus, 8889

hooks, 16, 26, 48

Java Beans, 85
JCL, 87
Jini, 6, 8586

LegORB, 23, 37, 101

meta-objects, see reflection

microkernels, 90

MIL, 94

mobile agents, see agents

mobile computing, 1, 9

multimedia distribution system, see Reflector

network-centrism, 14, 37

Olan, 95

OpenDoc, 87
overall architecture, 11

pizza, 7

Polylith, 92

prerequisites, 14, 15, 19, 70, 87-89
future work, 104

push and pull, 18

QoS, 15, 17, 19, 22, 58, 59, 61, 68
specification languages, 15, 19
Quarterware, 102

reflection, 24, 25, 83—84, 106
reflective middleware, 101, 102
reflective ORB, 47, 101
Reflector, 55—67, 99-100
experiments, 73-78
Regis, 95
resource management, 11, 15, 17, 22, 61
Rex, 94
RSL, 89
RTP, 55, 73, 76

scalability, 7, 38
security, 43, 48

future work, 105
separation of concerns, 24-25
SIDAM, 36
software architecture, 92
software buses, 92-94
SOS, 88
SPDF, 19, 21-22, 83
Surgeon, 93

2KFS, 23, 68

ubiquitous computing, see active spaces

UniCon, 6, 95

workflow, 98
WYNIWYG, 14, 89

129

