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Abstract. The development of distributed applications for Multimedia process-
ing with real-time and low-latency requirements faces a few key challenges. In
this paper, we characterize such applications as “firm real-time applications”,
argue that they should be based on a callback architecture, and discuss the as-
sociated network limitations. We present a new middleware system addressing
the challenges discussed and describe an application for distributed audio pro-
cessing built on top of this middleware. Experimental results obtained with this
application demonstrate the effectiveness of our approach.

1. Introduction
In several computer systems for multimedia processing (such as interactive systems for
the creation and edition of multimedia, particularly audio and music, or systems for pat-
tern recognition in continuous media), it is highly desirable to be able to do the processing
not only in real-time, but also with low latency. Low latency processing means that the
time it takes for a change in the input data of the computer system to produce the corre-
sponding output should be as small as possible; how small is enough, given the usual goal
that the latency must not be perceptible by the user, varies a lot with the application and
the user, but it seems that up to 5ms for the most critical interactive applications is rea-
sonable (see a discussion on the subject in Steinmetz and Nahrstedt, 1995, p. 588–599).

In interactive systems, for instance, low latency processing serves the purpose
of giving the user the illusion that the system performs the computations immediately,
which is very important since the user generally adjusts his input to the computer system
according to the output he receives from the system. Low latency may also be important
if we want part of the data to be processed in real-time by external devices (for instance,
we may want to route a previously captured audio signal into an analog effects processor
and record the resulting sound without losing the timing information of the signal).

A simple example of a situation in which real-time low-latency processing is de-
sirable is the recording of an acoustic musical instrument with some effect processing (for
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instance, an electric guitar processed by a custom digital distorter): while playing the in-
strument, the musician needs to hear the sound being produced; if the processing latency
is too large, the musician will have difficulties to perform correctly.

Systems for multimedia processing in real-time, including those where low la-
tency is desirable, usually demand large processing power from the computer system.
Problems that demand large computing power (as multimedia does) are usually solved by
parallel or distributed processing. However, the real-time and low latency requirements
of most multimedia processing systems coupled with the need for sometimes strict syn-
chronization between several media streams as well as the cost of multiprocessor systems
have made most multimedia applications to be developed for single processor systems.

In the audio and music processing field, it is not uncommon for such systems to be
coupled with dedicated, specialized hardware in order to boost the system performance.
Such hardware, however, is usually proprietary and expensive: for example, a single pro-
cessing board for the Pro Tools HD system costs 4 times as much as a complete mid-range
desktop PC in the USA1. On smaller studios without access to high-end equipment, it is
relatively common for the computing power during audio editing to be exceeded; when
this happens, usually part of the processing is done in non-realtime mode and the pro-
cessed result is saved to disk, which is inconvenient, since the possibility of interactive
experimentation is lost.

Given the economic advantage and flexibility offered by general-purpose com-
puter systems, being able to process multimedia data in a distributed system would be
useful, allowing users to go beyond the performance limits of single processor systems
in a more cost-effective way. Home and small music recording studios, which usually
cannot afford the expensive proprietary solutions, would benefit from the use of small
clusters of older and inexpensive computers to increase their processing power at a low
cost.

This paper describes (1) the requirements and limitations of mechanisms for dis-
tributed multimedia processing in real-time with low-latency, (2) a simple middleware
system which is a testbed for the ideas presented here, and (3) an application geared to-
wards audio processing developed on top of this middleware. In section 2.1. we character-
ize systems for multimedia processing as firm real-time applications and argue, in section
2.2., that low-latency, firm real-time systems should be based on callback functions. In
sections 2.3. and 2.4., we discuss the possible approaches for load distribution, address
the limits presented by the networking medium, and propose a mechanism to solve them.
Finally, in section 3.1., we describe the current implementation of the system and present
experimental results in section 5.

2. Problems and mechanisms
When designing a method for distributed processing of multimedia in real-time with low
latency, one must take into account several factors. The specific characteristics of mul-
timedia with regard to real-time and low latency, which suggest the use of specialized
real-time operating systems (such as RT-Linux – Barabanov and Yodaiken, 1996), must

1Prices consulted at <http://www.gateway.com> and <http://www.protools.com> in
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be balanced with the needs for advanced user interfaces and wide hardware support, which
suggest the use of general-purpose operating systems. The method by which the process-
ing is to be distributed must be addressed, and the limitations of the networking system
must be taken into account.

2.1. Firm real-time

Real-time systems are traditionally categorized as hard real-time systems or soft real-time
systems. Multimedia applications are often used as examples of soft real-time systems.
The definitions of soft and hard real-time systems, however, vary in the literature (Liu,
2000, p. 27–29). Hard real-time systems are usually defined as systems where a timing
failure is absolutely unacceptable (it might threaten human life, for instance). On the
other hand, most soft real-time systems are commonly characterized as systems where
timing failures are a relatively common event and where the system is usually expected
to adapt to such failures; for instance, a video playback application may skip or duplicate
frames during execution if deadlines are missed2.

While some multimedia applications (such as video players) are easily character-
ized as soft real-time, some others (such as interactive multimedia editing and processing
tools) are not: they cannot adapt to timing failures (since that would cause audio glitches,
skipped video frames etc. which might be acceptable in other environments, but are not
in a professional editing tool) and, therefore, need timing precision as close as possible to
that of hard real-time systems. On the other hand, sporadic failures are not catastrophic,
which means that statistical guarantees of timing are enough for such a system to be ac-
ceptable3.

Since it is not possible to deal with timing errors graciously, these systems do
not need to implement sophisticated mechanisms for error correction and adaptation as
most soft real-time systems do; all they need is to detect errors, which may be treated as
ordinary errors by the system. During the recording of a live musical event, for instance,
a failure may be registered for later editing. Reducing the quality of the recording, on the
other hand, is not acceptable. During the actual editing work, a failure may simply stop
the processing and present an error message to the user, who can restart the operation.
Neither one of these options can be characterized as “adaptation”: the failures are, in fact,
treated as processing errors, not as conditions to which the system can adapt.

Finally, such systems are ideally based on general purpose computers and oper-
ating systems, because they offer low cost, advanced user interfaces, and a rich set of
services from the operating system. The use of general purpose operating systems also
guarantees the compatibility of the application with a much wider range of general pur-
pose multimedia hardware equipment, since these systems usually offer software drivers
for such hardware, differently from operating systems designed specifically for real-time.

2Several research projects and commercial products have addressed this problem, particularly in dis-
tributed systems; c.f., for instance, Chen et al. (1995); Vieira (1999); Shepherd et al. (2001).

3In the case of interactive editing tools, the functionality of the application is not harmed much if even-
tual timing errors occur, say, once every half hour. If the user starts such real-time application and it runs
correctly for some seconds, it is likely that it will work correctly for longer periods. Even such empirical
evidence of “timing correctness” may be acceptable to the user in this case.



Researchers have classified systems with such “hybrid” needs as firm real-time
systems (Srinivasan et al., 1998). Such systems are characterized by being based on
general-purpose computers and operating systems, having statistically reliable timing pre-
cision, and treating timing errors as hard errors with no need for adaptation. Thanks to
the increasing number of firm real-time applications, general purpose operating systems
such as Linux and MacOS X have been greatly enhanced to offer good performance for
this kind of application. With the proper combination of hardware and software, Linux,
Windows, and MacOS are capable of offering latency behaviour suitable for multimedia:
from 3 to 6 milliseconds (MacMillan et al., 2001).

2.2. Callback functions

Although we advocate the use of general purpose computers and operating systems, the
usual read/write mechanism offered by them for I/O is not adequate for low latency pro-
cessing. This mechanism depends on buffering at the operating system level, and such
buffering increases the processing latency of the system by a significant amount.

In the audio processing field, this situation has been solved, under Windows
and MacOS, by the ASIO specification <http://www.steinberg.net/en/ps/
support/3rdparty/asio_sdk/index.php?sid=0> and, under Linux, by the
JACK system <http://jackit.sourceforge.net>. Both define mechanisms in
which, conceptually, a user space application can register a function (residing inside its
address space) that is responsible for handling the I/O data. When an audio interrupt is
generated by the audio hardware, the kernel interrupt handler writes and reads the data to
and from buffers inside the application’s address space and calls the user space function
that was registered to produce and consume data before the next interrupt. In this way, the
application can process input data as soon as it arrives and can output processed data as
soon as it is ready, communicating with low latency with the hardware device without the
need to have device-specific code inside itself. This method of using callback functions
for low latency I/O operations can be seen as a transposition of the kernel space interrupt
handler to the user space application, which allows for easy changing of the kind of pro-
cessing that is to be carried on at each interrupt without the need for making any changes
to the operating system kernel.

A very important point is that, in order to guarantee low latency operation, the
application must not block in any way during the callback function; if it did, the operating
system might schedule another process to run during the short period of time between
each interrupt. Since Linux, with low latency patches applied, has a typical scheduling
latency of about 500µs (Morton, 2001), the application would hardly be re-scheduled in
time to complete the processing before the next interrupt.

2.3. Distributed processing

We are interested in the distribution of multimedia processing across a collection of com-
puters in a network. There are several opportunities for this distribution:

• Development of new DSP algorithms capable of running concurrently;
• Parallel processing of different data streams (by allocating different streams to
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• Parallel processing trough pipelining (the available machines are “chained” and
each one processes, at time t, the data that was processed by the preceding ma-
chine at time t− 1. The problem with this approach is that it results in an increase
in the latency of the processing proportional to the number of machines in the
pipeline. The maximum length of the pipeline must, therefore, be computed care-
fully).

In order to appraise these possibilities, we should note that multimedia processing, and
specially music processing, is made of the combination of:

• multiple different processing algorithms applied to a single data stream (for exam-
ple, an electric guitar may be subjected to compression, distortion, flanging, EQ
and reverberation);

• multiple processed data streams grouped together (for example, 32 audio channels
recorded by 32 microphones on a stage).

Developing parallel algorithms for multimedia processing could be interesting, but this
solution is based on the creation of entirely new algorithms, aiming at achieving the same
functionality already available with non-parallel ones. While there are computationally-
intensive data transformations for multimedia that are particularly slow (to the point of
not being able to be run in real-time) which could benefit from this approach, the vast
majority of them (reverbs, distorters, compressors etc.) are relatively lightweight; it is the
sum of several of them to process an entire multimedia composition that can exceed the
computer’s capacity.

It seems, therefore, more interesting to base distributed systems for multimedia ap-
plications either on pipelining, where data is processed in sequence by several machines,
or on the parallel processing of the streams, where each data stream is assigned to a CPU
that performs the whole processing of the stream. Since pipelining increases the latency
of the system, our approach is based on the parallel processing of different streams. It
should be noted, however, that it would not be difficult to transpose this discussion (and
its implementation) to pipelining and even to a combination of both.

2.4. Network limitations
Since the hardware interrupts generated by the multimedia hardware are responsible for
driving the timing of the complete system, the machine that treats these interrupt requests
in a distributed system must have a special role4. In order to process real-time multimedia
data remotely, an application running on this machine must

1. receive the sampled data from the multimedia device after a hardware interrupt
request,

2. send it out through the network,
3. have the data remotely processed,
4. get it back from the remote machine, and
5. output it to the multimedia device before the next interrupt (Figure 1).

4It is possible to have different machines perform I/O synchronously using hardware capable of operat-
ing with “word clock”, which is a hardware mechanism to synchronize multiple sound cards. This, however,
relies on additional hardware on each node and, at the same time, alleviates the need to use the network
for the purposes described here, since each machine is able to completely process incoming and outgoing
streams of data independently. Therefore, this approach is a special case, which is out of the scope of this
paper.



Figure 1: At each interrupt In, captured data (Dn) is sent out to the remote ma-
chine, processed (Pn), returned (Rn) to the originating machine already
processed (D′

n
), and output to the multimedia device before the next

interrupt (In+1).

This mode of operation, however, uses the network in half-duplex mode, and uses
both the network and the remote CPU for only a fraction of the time between interrupts.
Given current commodity networking technologies (namely, Fast Ethernet), it is not hard
to notice that such setup would offer the possibility of very little remote processing to
be performed. If we are to seek better resource utilization, we should observe that we
may distinguish three phases on the remote processing of data (for simplicity, only two
machines will be considered):

1. the data transfer from the originating machine to the remote machine;
2. the remote data processing;
3. the data transfer from the remote machine back to the initial machine.

We can benefit from a mechanism similar to the sliding windows technique used in several
networking protocols (for instance, the use of sliding windows in the TCP/IP network
protocol is described in Stevens, 1994, p. 280–284) to achieve better performance in a
distributed application: at each callback function call (usually brought up by a hardware
interrupt), the captured data is sent to the remote machine and the data that was sent out
on the previous iteration and remotely processed is received. That is, the output data is
reproduced one period “later” than it would have been normally, but this permits data to
be sent, processed, and received back in up to two periods instead of just one (Figure 2 on
the following page – a). If the amount of data is so large that two periods is not enough
time to send, process, and receive the data, we may extend this method to make the delay
correspond to two periods instead of one, which allows us to use three periods to perform
these operations (Figure 2 on the next page – b). This is optimal in the sense that it allows
us to use the full network bandwidth in full duplex and also to utilize all the processing
power of the remote machine, but has the cost of added latency. These two modes of
operation use the sliding windows idea with windows of size one and two respectively5.

2.5. Summing up

Any system for the distributed processing of real-time applications with low latency could
be seen as a distributed firm real-time application capable of operating with callback func-
tions. Thanks to the fact that multimedia applications typically deal with multiple streams
of data simultaneously, allocating different data streams to different machines provides

5We should note that we cannot extend this idea to window sizes larger than two because each one of
the sending, processing, and receiving data phases cannot take longer than one period each. If any of them
did, it wouldn’t have finished its task when new data to be dealt with was made available on the next period.



(a) window size 1

(b) window size 2

Figure 2: At each interrupt In, captured data (Dn) is sent out to the remote ma-
chine to be processed (Pn); remotely processed data from a previous
iteration (D′

n−1or D
′
n−2) is returned (Rn−1or Rn−2) and output to the mul-

timedia device before the next interrupt (In+1).

for a simple and efficient method of load distribution. Given the commodity network-
ing hardware available today, in order to promote better resource usage, such distribution
must make use of the sliding windows idea with windows of size one or two, which yield
respectively one or two additional network buffers and the corresponding additional la-
tency.

3. A middleware system for distributed real-time, low-latency processing
The data communication between applications on a network may involve many different
kinds of data; industry standards such as CORBA (Henning and Vinoski, 2001; Siegel,
2000) promote a high level of abstraction for this kind of communication, allowing for
virtually any kind of data to be sent and received transparently over networks of heteroge-
neous computers. However, mechanisms such as CORBA introduce an overhead that may
hinder low latency communication. In order to achieve better real-time and low latency
performance, we developed, in C++ under Linux, a simple middleware system (approxi-
mately 2000 lines of code) geared towards distributed multimedia processing taking into
consideration the aspects discussed in section 2.

This middleware does not intend to compete with systems like CORBA in terms
of features, abstraction level, or flexibility; on the contrary, the intent is only to establish
a simple and efficient method for the transmission of synchronous data in real-time with
low latency in a local network. For this reason, it deals only with preallocated data buffers,
not with data organized in an object-oriented way; and, for the same reason, it deals only
with buffers of data types native to the C programming language: integers, floats, doubles,
and characters.



Coupled with systems like CORBA, however, the present middleware may offer
a blend of the most interesting characteristics of such systems, such as flexibility, trans-
parency etc. with good performance on applications with real-time and low latency needs.
Our real-time communication mechanism can be used by CORBA objects to achieve low
latency communication. The development of distributed applications with real-time and
low latency needs can, therefore, use CORBA for its non-real-time aspects and the mid-
dleware described here for its real-time aspects.

3.1. Implementation

For each data stream that is to be processed remotely, the central machine creates an
instance of the Master class. Objects of this class maintain a pair of UDP “connections”
with the remote machine that is responsible for the processing of that stream, one to
send and the other to receive the data6. Instances of this class have an attribute of type
DataBlockSet, which is an (initially empty) collection of instances of the DataBlock
class. As can be seen in Figure 3, every time the application needs to register a new buffer
of data to be remotely processed, it asks Master for the creation of a new DataBlock;
Master delegates this operation to the DataBlockSet. After receiving the reference to
the DataBlock, the application can register a pointer to a memory buffer and its size in
this DataBlock, as well as define if this buffer must be only read (sent to the remote
machine), written to (received from the remote machine) or both. At each iteration, the
application then only has to call the process() method of the Master object to have
the data processed; this method sends and receives the data buffers that are contained in
the DataBlocks that are part of the DataBlockSet, taking care not to block when reading
from the network, but to use busy-wait instead if needed. Data types sensible to the byte
ordering have their bytes rearranged (if necessary) by the DataBlock object that contains
them after they are received by either side of the communication link.

Figure 3: Interaction between the client and the Master/Slave classes for the def-
inition of a new buffer that is to be sent/received through the network.

On the remote machine, an object of the Slave class keeps corresponding UDP
“connections” with the central machine and a DataBlockSet with DataBlocks corre-

6While the current implementation uses UDP for communication, the connections between the machines
are handled by independent classes, which may be substituted in order to support other network protocols.
In fact, UDP does not have real connections: in this implementation, the connections exist only on a con-
ceptual level. Also, all data to be sent/received is encapsulated in a single UDP datagram, which limits the
size of the data to be transferred at each iteration to around 60KBytes, which is the maximum size of a UDP
datagram.



sponding to the DataBlocks created on the central machine. This class also keeps a ref-
erence to a callback function, defined by the application, that is called every time a new
block of data is received from the network; at the end of the processing, the resulting data
is sent back to the central machine (Figure 4). Differently from the Master class, Slave
blocks when reading from the network: the availability of network data is the result of
the interrupt generated on the central machine, which triggers the operation on the other
machines.

Figure 4: Interaction between the classes for the data exchange between ma-
chines.

When created, objects of the Master class define the window size that should be
used for the connection. Besides the data buffers allocated by the application, Master also
sends and receives a counter, used to detect errors on the ordering of the data received by
Master.

4. An application: distributed LADSPA
In order to process the data with the least possible latency, we need to do all the processing
inside the callback function. On the other hand, we want to be able to perform several
different kinds of processing inside the callback function: in a multimedia editing or
processing application, each one of several available processing algorithms should be
easily activated, deactivated, combined with others, and applied to different data streams.
Also, new algorithms should be incorporated into the system easily.

The most common solution to these requirements is to implement each processing
algorithm as an independent software module (usually called a plugin) that is loaded by
a generic application that deals with the modules without knowing anything about its
internals, following the tendency towards component-based development. These modules
must be compatible with the operation inside a callback function and must, if possible,
avoid the memory allocation needed by pass-by-value function calls; that is, they must
process data buffers previously allocated, just as the main callback function does.

In the audio processing field, two specifications for the development of
plugins that follow this design have gained widespread use: the VST spec-



ification <http://www.steinberg.net/en/ps/support/3rdparty/vst_
sdk/index.php?sid=0> under Windows and MacOS and the LADSPA specifica-
tion <http://www.ladspa.org> under Linux. Any application compatible with
either specification can make use of any plugin available under that specification without
the need to know anything about the internals of the module and still be able to work with
low latency.

In order to make the distributed processing of audio easier for a larger audience of
free software users, as well as to stimulate the use of free software in music applications,
we decided to implement a mechanism for distributed audio processing compatible with
the LADSPA specification, presenting the system to any audio application as an ordinary
LADSPA plugin; this way, applications designed to make use of LADSPA plugins are able
to use the system unmodified. At the same time, our middleware supports distribution
of all the algorithms already available as LADSPA plugins (such as flangers, reverbs,
synthesizers, pitch scalers, noise gates etc.), simply by delegating the processing to them.
The current version of this implementation is available for download under the LGPL
license at <http://gsd.ime.usp.br/software/DistributedAudio>.

The layer responsible for the interaction with the application is simply an ap-
plication of the Adapter design pattern (Gamma et al., 1994): it presents itself to the
application with the interface of a LADSPA plugin but, on the inside, creates a Master
object responsible for passing the data to be processed to a remote machine. On the re-
mote machine, the application creates data buffers in which the received data is written;
a Slave object receives the data and invokes the callback function that the application
registered, which just calls the appropriate function of the real LADSPA plugin. A mech-
anism for the dynamic creation of “meta-plugins”, i.e., LADSPA plugins that are actually
compositions of several other LADSPA plugins, is in the works.

Several aspects of our system need to be configured without a need for low latency
processing, such as selecting which machine is to perform which processing on which data
stream, defining the window size to use etc. For these, another layer, based on CORBA,
allows the easy creation and destruction of data processing chains, definition of network
connections etc. Machines capable of operating as “slaves” are able to register themselves
in a CORBA trader to facilitate the instantiation of the remote plugins.

5. Experimental results

In order to verify the viability of our middleware, we performed experiments with the
LADSPA distributed system. We created a LADSPA plugin (the waste_time plugin) that
simply copies its input data to its output and then busy-waits for a certain time. When it
starts operating, it busy-waits, at each iteration, for as long as necessary to make the whole
processing time of that iteration 100µs; after 10s of operation, it busy-waits to make
the iteration take 200µs; after another 10s, 300µs; and so on. When the JACK server,
jackd, starts issuing timing errors, we know the system cannot cope with the amount of
processing time used by the plugin and so we register the largest time an iteration can take
before the system stops functioning properly. The plugin also gathers data from the Linux
/proc filesystem about the system load in terms of user time and system time and, when
the experiment is over, saves the data to a file. With this setup, we were able to determine



the maximum percentage of the period that is available for any LADSPA plugin to process
and, at the same time, the system load generated during this processing. With this data,
we are able to determine the overhead of our middleware system. While 10s may seem
a small amount of time, since each iteration takes less than 5ms, this is sufficient to run
more than 2000 iterations of each configuration.

5.1. Software and hardware testbed

To run the experiments, we used the JACK daemon, jackd, version 0.72.4; it allowed
us to communicate with the sound card with low latency and experiment with sev-
eral different interrupt frequencies; the sound driver used was ALSA <http://www.
alsa-project.org> version 0.9.4. On top of jackd, we used the application jack-
rack <http://pkl.net/~node/jack-rack.html>, version 1.4.1, to load and
run our plugins. This application is an effects processor that works as a jackd client load-
ing LADSPA plugins and applying them to the data streams provided by jackd. We first
made measurements with the waste_time plugin running on the local machine, just as
any other LADSPA plugin. We then performed experiments in which jack-rack would
load instances of our proxy plugin, which would then handle the data to be processed to
remote instances of the waste_time plugin. At the same time, we measured (using the
/proc filesystem) system load on the central machine. The experiments were run partly at
44.1KHz, partly at 96KHz audio sampling rate; LADSPA and JACK treat all samples as
32 bit floats.

The central machine was an Athlon 1.4GHz PC with 256MB RAM, running De-
bian GNU/Linux with Linux kernel version 2.4.20 with low latency patches applied; the
audio card was an M-Audio Delta 44 <http://www.m-audio.com/products/
m-audio/delta44.php>. The other machines ran a GNU/Linux system with the
bare minimum to run the slave application, under the same Linux kernel, version 2.4.20
with low latency patches applied. The remote machines were: another athlon 1.4GHz PC
with 256MB RAM, two athlon 1.1GHz PCs with 256MB RAM, one AMD K6-2 400MHz
PC with 192 MB RAM, two AMD K6-2 450MHz PCs with 192MB RAM, and one AMD
K6-2 350MHz PC with 192MB RAM. The athlons had onboard SiS900 network hard-
ware, while the K6s used low-cost 8139-based PCI network cards. The machines were
interconnected by an Encore switching hub model ENH908-NWY+7.

5.2. Experiment limitations

The waste_time plugin, being very simple, probably allows for the memory cache on the
machines where it runs on to be filled with the code needed by the kernel to perform both
network communication and task switching; that probably would not be the case with a
real application. Therefore, we should expect real applications to have a higher overhead
than what was measured. On the other hand, as we will see, the measured overhead was
almost nonexistent.

While jackd under Linux runs very well, there were occasional “xruns”, that is,
the system was unable to read or write a complete buffer to or from the sound card in
time. Xruns of about 30–60µs occurred sporadically, always when the load of audio
processing was relatively low; they even occurred when jackd was running without any

7Many thanks to the folks at fonte design for providing us with the test environment.



clients attached and the machine was not performing any audio processing. The probable
reason is that, while the typical scheduling latency of the patched kernel is about 500µs,
it can sometimes be higher, causing longer delays. When the processing load is higher,
the kernel most likely schedules less processes between each interrupt, reducing other I/O
activity and, therefore, staying closer to the typical scheduling latency of 500µs. This
problem prevented us from experimenting with periods shorter than 1.45ms, when these
random xruns became too common. It is probably possible to reduce or eliminate these
xruns by configuring jackd to use three buffers instead of two to communicate with the
sound card (at the cost of additional latency) or with a faster machine, but we did not try
to do that; instead, we just ignored these sporadic xruns, since they were not related to
our system and were easily discernible from the xruns caused by system overload.

5.3. Results

We first tried to determine the maximum time the waste_time plugin could spend at each
period when running at the local machine; this experiment serves as a comparison for the
distributed processing in which we are interested (Figure 5).
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(a) at 44.1KHz audio sampling rate
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(b) at 96KHz audio sampling rate

Figure 5: On a single machine, longer periods allow the plugin to use more CPU
time, increasing efficiency.

As expected, the smaller periods make the system less efficient, because they im-
ply a higher interrupt rate and, therefore, a higher overhead. Besides that, the scheduling
latency is proportionally higher with shorter periods: after the interrupt is issued by the
sound card, the kernel takes approximately 500µs to schedule the application to run and
process the data, which is approximately 30% of the time between interruptions when the
period size is 1.45ms. Finally, jitter in the scheduling latency become more troublesome
with shorter periods. At 44.1KHz with a period of 1.45ms, 89% of the period size was
usable by the plugin; the load on the system was 91% of user time (the CPU time spent
by ordinary processes) and 1% of system time (the CPU time spent by the kernel per-
forming general tasks). Therefore, we could not use more than 92% of the CPU time with
this period size. At 96KHz, the maximum usable time in each period and the maximum
CPU load obtainable were a little lower. At 44.1KHz with period sizes of 3.0ms or more,
around 96% of the period size was usable by the plugin; the load of the system was around



97% of user time and 0% of system time. For these period sizes, therefore, we could use
nearly all the CPU time to do the processing.

The next experiment was to run the waste_time plugin on remote machines and
have them communicate with the central machine with window size zero, i.e., the master
machine would busy-wait until the processed data arrived (Figure 6).
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Figure 6: Remote usable CPU time decreases rapidly with more machines when
using window size zero.

This proved how impractical that approach would be: there is simply no gain in
this setup. The user and system times measured on the central machine can be misleading:
they correspond mainly to busy-waiting, which involves a user-space loop that performs
a system call (read()); much of this time could be used by a local plugin instead,
processing other data in parallel with the remote machine. Still, the maximum percentage
of the period size usable for processing by a single remote machine is 73%; for two remote
machines, this drops to 27% at each machine; for three machines, this drops even more,
to 9% at each machine. These gains do not justify distributed processing.

After that, we wanted to measure the local overhead introduced by the system
without busy-waiting; in order to do that, we set up the communications layer to use a
window of size two. Then we ran the experiment with a period of 2.18ms at 44.1KHz
with 1, 2, 3, and 4 remote machines and at 96KHz with 4 and 7 machines (Figure 7 on
the following page).

The load generated by the system on the central machine, while significant, is
totally acceptable; it also grows approximately linearly, which was expected. We also
verified that the load on the central machine generated by 4 remote machines with 96KHz
sample rate is almost the same as the load generated by 4 remote machines with 44.1KHz
sample rate, which actually came as a surprise.

Finally, we wanted to determine the maximum time a plugin could spend at each
period when running at several remote machines using a window of size one. We ran the
experiment with 4 remote machines at 96KHz audio sample rate using different period
sizes and with 7 remote machines using a period of 2.19ms (Figure 8 on the next page).
This showed that the remote CPU usage is excellent with a relatively low local overhead,
even with this many machines: with a period size of 2.19ms and a sample rate of 96KHz,
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Figure 7: The load on the central CPU increases linearly with the number of re-
mote machines.

the waste_time plugin could run remotely for 96% of the period, yielding 99% of user
time CPU usage. The CPU usage on the central machine was about the same as on the
previous experiment, 45% user time and 20% system time.
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Figure 8: CPU time available for the plugin on the remote machines is similar to
that on a single machine.

As we just saw, truly synchronous distributed processing (using window size zero)
is not a practical approach to the problem of distributing multimedia processing with low
latency. Using the sliding windows idea, though, proved to be an efficient approach: with
window size one, it made it possible for us to distribute 96KHz audio to be processed by 7
remote machines with very little overhead on these remote machines, allowing the plugin
on them to use almost 100% of the CPU time and with an acceptable load on the central
machine. It is reasonable to expect the maximum number of remote machines to be even
higher with the hardware used, since the network bandwidth and the central machine have
not achieved their maximum usage during the experiments. With a faster processor and a
higher-end network interface (which presumably reduces the CPU usage for networking)
on the central machine, the limit would probably be imposed by the network physical
speed.



6. Conclusions and future work

Distributed multimedia processing with low latency offers some special difficulties; this
paper presents a simple approach to overcome these difficulties. The ability to perform
multimedia processing in distributed systems opens several possibilities; while this pa-
per addresses only performance aspects, there may be applications that benefit from dis-
tributed processing in other ways. For instance, a distributed interactive multimedia appli-
cation that uses multiple displays in a room and reacts to user input may use a mechanism
similar to the one presented here to handle the user input and the corresponding distributed
output with low latency.

It would be interesting to be able to process multiple data streams on each of the
remote machines; we must perform more experiments to investigate the impact of the
resulting additional context switches to the performance of the system. Extending the
middleware presented here to operate with pipelined processing might prove useful, since
there is an upper limit to the number of parallel machines that the central machine can
coordinate.

While the middleware system presented here intends to be generic, the current
work conducted with it was heavily based on audio processing. An investigation of the
applicability of this system to other forms of multimedia should be conducted in order to
investigate limitations, possibilities, and further enhancements. High-resolution video, in
particular, involves too much data to be transferred uncompressed in a Fast Ethernet in
real-time, which suggests the use of Gigabit Ethernet to perform the communication.
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